Problem Set 1 - Analysis ¹

Due date: 08/26

Question 1 Suppose P, Q, and R are statements. Use the truth table to show that the following statements are always true.

- (1) $(P \land (P \Rightarrow Q)) \Rightarrow Q \pmod{ponens}$
- (2) $((P \Rightarrow Q) \land \neg Q) \Rightarrow \neg P \ (modus \ tollens)$
- (3) $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$ (syllogism)

Question 2 Suppose A and B are sets. Show the following statements are equivalent.

- (1) $A \subset B$.
- (2) $A \cup B = B$.
- (3) $A \cap B = A$.

Question 3 In class, we defined the uniqueness existential quantifier: $\exists!$. For example, " $\exists!x \in X$ such that..." means "there exists a unique x in X such that..." However, such statements can be defined using \forall , \exists , and logical operators.

Write a symbolic statement that is equivalent to " $\exists ! x \in X$ such that P(X)" without using !.

Question 4 Let us consider a function $f: \mathbb{R}^n \to \mathbb{R}$.

- (a) If f is strictly increasing, is it strongly increasing?
- (b) If f is strongly increasing, is it strictly increasing?

Question 5 Use the epsilon-delta definition of a limit to prove that

$$\lim_{x \to 1} \frac{x}{x^2 + 1} = \frac{1}{2}$$

Question 6 Use the Squeeze Theorem, prove that

$$\lim_{x \to \infty} (1 + \frac{1}{x^2})^x = 1$$

(Hint: $\lim_{x\to\infty} (1+\frac{1}{x})^x = e$ and $\lim_{x\to\infty} e^{\frac{1}{x}} = 1$)

 $^{^1 {\}rm Instructors} :$ Camilo Abbate and Sofía Olguín

OPTIONAL QUESTIONS

Question 7 Prove the generalized De Morgan's Law: for sets $A_1, A_2, ...A_n$,

(a)
$$\left(\bigcup_{i=1}^{n} A_{i}\right)^{C} = \bigcap_{i=1}^{n} A_{i}^{C}$$

(b)
$$\left(\bigcap_{i=1}^{n} A_{i}\right)^{C} = \bigcup_{i=1}^{n} A_{i}^{C}$$

Question 8 Revisit the example from lecture. Let $X = \{a, b, c\}$, and $\succ \subset X \times X$ be a preference relation. Moona has the following preferences:

$$a \succ_M b$$
, $a \succ_M c$, $b \succ_M c$

Nina has the following preferences:

$$a \succ_N a$$
, $a \succ_N b$, $a \succ_N c$, $b \succ_N c$, $b \succ_N b$, $c \succ_N c$

Let us consider the following definitions:

Definition. We say a relation R defined on $X \times X$ is complete if for any $x, y \in X$, $(x, y) \in R$ or $(y, x) \in R$. We say a relation R defined on $X \times X$ is transitive if for any $x, y, z \in X$, when $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$.

- (a) Are \succ_M and \succ_N complete?
- (b) Are \succ_M and \succ_N transitive?

Question 9 Consider a lexicographical preference on \mathbb{R}^2 as follows: $(x,y) \succeq (x',y')$ if x > x' or x = x' and $y \geq y'$.

- (a) Characterize \succeq using a set expression.
- (b) Show that \succeq is complete and transitive.

Question 10 Let E be a nonempty subset of an ordered set. Suppose α is a lower bound of E and β is an upper bound of E. Prove that $\alpha \leq \beta$.