
Problem Set 2 - Linear Algebra - Solutions
Math Camp 2025, UCSB
Instructors: Camilo Abbate and Sof́ıa Olgúın

1. Let S be a sample space and let B be a σ-algebra on S. Use the properties of a
σ-algebra to prove that:
(a) S ∈ B .

(Hint: start with that B should be nonempty.)

• S ∈ B

B ̸= ∅ ⇒ E ∈ B (B is nonempty)

⇒ Ec ∈ B (closed under complements)

⇒ E ∪ Ec ∈ B (closed under countable unions)

⇒ S ∈ B

• ∅ ∈ B

S ∈ B ⇒ ∅ ∈ B (closed under complements)

(b) B is closed under countable intersections.
• B is closed under countable intersections.

E1, E2, · · · ∈ B ⇒ Ec
1, E

c
2, · · · ∈ B (closed under complements)

⇒
∞⋃
i=1

Ec
i ∈ B (closed under countable unions)

⇒

(
∞⋂
i=1

Ei

)c

∈ B (DeMorgan’s Laws)

⇒
∞⋂
i=1

Ei ∈ B (closed under complements)

1



2. Let P be a probability measure on a sample space S with σ-algebra B, and let A,B ∈ B.
Prove the following properties:
(a) P(Ac) = 1− P(A)

P(S) = P(A) + P(Ac) (S = A ∪ Ac ∧ A ∩ Ac = ∅)

1 = P(A) + P(Ac) (P(S) = 1)

(b) P(A) ≤ 1

1 = P(A) + P(Ac)

P(A) = 1− P(Ac)

P(A) ≤ 1 (P : B 7→ [0,∞))

(c) P(B ∩ Ac) = P(B)− P(B ∩ A)

P(B) = P(B ∩ Ac) + P(B ∩ A)
(B = (B ∩ Ac) ∪ (B ∩ A) ∧ (B ∩ Ac) ∩ (B ∩ A) = ∅)

(d) P(A ∪B) = P(A) + P(B)− P(A ∩B)

P(A ∪B) = P(A) + P(B ∩ Ac) (A ∪B = A ∪ (B ∩ Ac) ∧ A ∩ (B ∩ Ac) = ∅)

(e) If A ⊆ B, then P(A) ≤ P(B)

P(B ∩ Ac) = P(B)− P(A ∩B)

P(B ∩ Ac) = P(B)− P(A) (A ⊆ B)

0 ≤ P(B)− P(A) (P : B 7→ [0,∞))
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3. Let S be a sample space with σ-algebra B, and let A,B ∈ B. Prove that if A and B
are independent, then the following pairs of events are also independent:
(a) A and BC

P(A ∩BC) = P(A)− P(A ∩B)

= P(A)− P(A)P(B) (since A and B are independent)

= P(A)(1− P(B)) (rearranging)

= P(A)P(BC) (by property)

(b) AC and B

P(AC ∩B) = P(B)− P(A ∩B)

= P(B)− P(A)P(B) (since A and B are independent)

= P(B)(1− P(A)) (rearranging)

= P(B)P(AC) (by property)

(c) AC and BC

P(AC ∩BC) = P ((A ∪B)C) (by De Morgan’s Law )

= 1− P (A ∪B) (by property)

= 1− [P(A) + P(B)− P(A ∩B)]

= 1− P(A)− P(B) + P(A)P(B) (since A and B are independent)

= 1− P(A)− (1− P(A))P(B) (rearranging)

= (1− P(A))(1− P(B)) (rearranging)

= P(AC)P(BC) (by property)
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4. Let P be a probability measure on a sample space S with σ-algebra B. Let A,B,C ∈ B.
(a) Show that P(A∩B∩C) = P(A)P(B)P(C) does not imply that the events A,B,C

are pairwise independent. (Hint: you only need to provide a counterexample).
Example 1.3.10 in Casella and Berger (2002)
Let the experiment consist of tossing two dice. The sample space is:

S = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (2, 6), . . . , (6, 1), . . . , (6, 6)}

This gives us 6× 6 = 36 ordered pairs.
Define the following events:

A = {doubles appear} = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}

B = {the sum is between 7 and 10}

C = {the sum is 2 or 7 or 8}

The probabilities of these events are:

P (A) =
6

36
=

1

6
, P (B) =

18

36
=

1

2
, P (C) =

12

36
=

1

3

The probability of the intersection of the three events is:

P (A ∩B ∩ C) = Probability that all three events occur

This happens only when the outcome is (4, 4), since:
• It’s a double ⇒ (4, 4) ∈ A

• 4 + 4 = 8, which is between 7 and 10 ⇒ (4, 4) ∈ B

• The sum is 8 ⇒ (4, 4) ∈ C
Thus:

P (A ∩B ∩ C) =
1

36

And interestingly:

P (A ∩B ∩ C) = P (A) · P (B) · P (C) =
1

6
· 1
2
· 1
3
=

1

36

This could suggest that the events A, B, and C are independent. However,

P (B ∩ C) = P (sum equals 7 or 8) =
11

36
̸= P (B) · P (C)

Similarly, it can be shown that: P (A ∩B) ̸= P (A) · P (B)

Therefore, the condition: P (A ∩ B ∩ C) = P (A) · P (B) · P (C) is not enough to
guarantee pairwise independence.
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(b) What additional conditions are needed to guarantee that A,B, and C are mutually
independent?
Conditions for mutual independence:

• P(A ∩B) = P(A)P(B)

• P(A ∩ C) = P(A)P(C)

• P(B ∩ C) = P(B)P(C)

• P(A ∩B ∩ C) = P(A)P(B)P(C)

5. A test is used to detect the presence of a disease. The test has the following properties:
• If a patient has the disease, the test always returns a positive result.

• If a patient does not have the disease, the test returns a false positive with prob-
ability 0.005.

Suppose the probability of having the disease is 0.001.
If a patient receives a positive test result, what is the probability that they have the
disease?
From the question we know:

P(positive|disease) = 1

P(positive|no disease) = 0.005

P(disease) = 0.001

We are interested in the probability that a patient has the disease given that they test
positive: P(disease|positive).
Recall Bayes’ rule:

P(A|B) =
P(B|A)P(A)

P(B)
=

P(B|A)P(A)∑
j∈I P(B|Aj)P(Aj)

.

Assign the event of having the disease to A and the event of a positive test result to B.
We first use the Law of Total Probability to obtain the probability of having a positive
result, P(B):

P(positive) = P(disease)P(positive|disease) + P(no disease)P(positive|no disease)

= 0.001× 1 + 0.999× 0.005 = 0.005995.

Then by Bayes’ rule, we have that:

P(disease|positive) = P(positive|disease)P(disease)
P(positive)

=
1× 0.001

0.005995
≈ 0.1668
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6. A variable X is lognormally distributed if Y = ln(X) is normally distributed with

mean µ and variance σ2. That is, fY (y) =
1√
2πσ2

e−
1
2(

y−µ
σ )

2

. Let the transformation be

defined by x = g(y) = ey so that y = g−1(x) = ln(x).
(a) Derive fX(x).

fX(x) = fY

(
g−1(x)

) ∣∣∣∣dg−1(x)

dx

∣∣∣∣ = 1√
2πσ2

e−
1
2(

ln(x)−µ
σ )

2
(
1

x

)

(b) Derive E[X t] using MY (t). What are E[X] and V (X)?

We know that MY (t) = eµt+
1
2
σ2t2 . Then

E[X t] = E[etY ] = MY (t) = eµt+
1
2
σ2t2

E[X] = eµ+
1
2
σ2

E[X2] = e2µ+2σ2

V (X) = (eσ
2 − 1) · e2µ+σ2

7. Let us consider the Law of Iterated Expectations in the continuous case. Suppose that
E[Y ] < ∞. Prove the following results:

(a) E[Y ] = E
[
E[Y |X]

]

E[Y ] =

∫ ∞

−∞
yf(y)dy (by definition of expectation)

=

∫ ∞

−∞
y

(∫ ∞

−∞
f(y, x)dx

)
dy (by definition of marginal distribution)

=

∫ ∞

−∞
y

(∫ ∞

−∞
f(y|x)f(x)dx

)
dy (by definition of conditional distribution)

=

∫ ∞

−∞

(∫ ∞

−∞
yf(y|x)dy

)
f(x)dx (by property of integral)

=

∫ ∞

−∞
E[Y |X = x]f(x)dx (by definition of conditional expectation)

= E[E[Y |X]] (by definition of expectation)
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(b) E[Y |X] = E
[
E[Y |X,Z] | X

]
Note that

E[Y |X = x, Z = z] =

∫ ∞

−∞
yf(y|x, z)dy.

In addition, note that

f(y|x, z)f(z|x) = f(y, x, z)

f(x, z)

f(x, z)

f(x)
=

f(y, x, z)

f(x)
= f(y, z|x).

Then we find that

E
[
E[Y |X,Z] | X

]
=

∫ ∞

−∞
E[Y |X = x, Z = z] f(z|x)dz

=

∫ ∞

−∞

(∫ ∞

−∞
yf(y|x, z)dy

)
f(z|x)dz

=

∫ ∞

−∞

∫ ∞

−∞
yf(y|x, z)f(z|x)dydz

=

∫ ∞

−∞

∫ ∞

−∞
yf(y, z|x)dydz

=

∫ ∞

−∞
yf(y|x)dy

= E[Y |X].

8. Assume there are n volunteers elegible to receive a treatment. For each unit i ∈
{1, · · · , n}, define the treatment indicator

Di =

{
1 if unit i is treated

0 otherwise

Let (D1, · · · , Dn) be the vector of the treatment indicators of all units. Due to capacity
constraints, only n1(< n) units can be treated:

∑n
i=1 Di = n1.

(a) What is the total number of distinct treatment assignment vectors (D1, · · · , Dn)
we can construct?

We are choosing n1 out of n units, unordered, so there are
(
n
n1

)
possible ways.
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We say that treatment is randomly assigned if (D1, · · · , Dn) are random variables, and
if for any vector of n numbers (d1, · · · , dn) ∈ {0, 1}n such that

∑n
i=1 di = n1,

P (D1 = d1, · · · , Dn = dn) =
1(
n
n1

)
That is, random assignment generates uniform treatment probabilities across units.
Assuming the treatment is randomly assigned, answer the following:
(b) For any unit i ∈ {1, · · · , n}, what is P (Di = 1)?

P (Di = 1) =

(
n−1
n1−1

)(
n
n1

) =
n1

n

(c) For any units i ̸= j, what is P (Di = 1 ∧ Dj = 1)? Is it true that unit i getting
treated is independent from unit j getting treated?

P (Di = 1 ∧ Dj = 1) =

(
n−2
n1−2

)(
n
n1

) =
n1(n1 − 1)

n(n− 1)
.

Note that P (Di = 1 ∧ Dj = 1) ̸= P (Di = 1)P (Dj = 1) and P (Di = 1 | Dj = 1) ̸=
P (Di = 1). The intuition is that if Dj = 1, Di is less likely to be equal to 1 than
if Dj = 0. If Dj = 1, then there are only n1 − 1 treatment seats left for n − 1
units, while if Dj = 0, then there are still n1 treatment seats left for n− 1 units.
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