Problem Set 2 - Linear Algebra - Solutions
Math Camp 2025, UCSB
Instructors: Camilo Abbate and Sofia Olguin

1. Let S be a sample space and let B be a o-algebra on S. Use the properties of a
o-algebra to prove that:
(a) SeB.
(Hint: start with that B should be nonempty.)

e ScB
B+£0) = FEeB (B is nonempty)
= FE°€B (closed under complements)
= FEFUE‘eB (closed under countable unions)
= SeB
e )eB
SeB = 0eB (closed under complements)

(b) B is closed under countable intersections.
e B is closed under countable intersections.

E\,Ey,---€eB = E{FE---€B (closed under complements)

= U EieB (closed under countable unions)
i=1
= <ﬂ EZ> eB (DeMorgan’s Laws)
i=1
= ﬂ E, B (closed under complements)
i=1



2. Let P be a probability measure on a sample space S with o-algebra B, and let A, B € B.
Prove the following properties:
(a) P(A9) =1—P(A)
P(S) =P(A) + P(A°) (S=AUA® A ANA°=0)

1 = P(A) + P(A°) (P(S) = 1)

P(A) <1 (P: B+ [0,00))

P(B) =P(BNA°)+P(BNA)
(B=(BNA)U(BNA) A (BNA)YN(BNA)=0)

(d) P(AU B) = P(A) + P(B) — P(AN B)

P(AUB)=P(A)+P(BNA°) (AUB=AU(BNA°) A ANn(BNA°)=0)

(e) If A C B, then P(A) < P(B)
P(B N A%) = P(B) — P(AN B)
P(B N A%) = P(B) — P(A) (AC B)

0 < P(B) — P(A) (P: B [0,00))



3. Let S be a sample space with o-algebra B, and let A, B € B. Prove that if A and B
are independent, then the following pairs of events are also independent:
(a) A and B¢
P(ANBY) =P(A) —P(AN B)
=P(A) - P(A)P(B) (since A and B are independent)
=P(A)(1 -P(B)) (rearranging)

— P(A)P(BY)  (by property)

(b) A® and B
P(A° N B) =P(B) —P(AN B)
—P(B) —P(A)P(B)  (since A and B are independent)
—P(B)(1 —P(A))  (rearranging)

=P(B)P(AY)  (by property)

(¢) AC and BC
P(A° N BY) = P((AuB)“)  (by De Morgan’s Law )
—1-P(AUB)  (by property)
—1—[P(A) +P(B) —P(AN B)|
—1—P(A) —P(B) + P(A)P(B)  (since A and B are independent)
—1-P(A) — (1 —P(A)P(B) (rearranging)
= (1 -P(A)(1-P(B))  (rearranging)

=P(A“)P(B)  (by property)



4. Let P be a probability measure on a sample space S with o-algebra B. Let A, B,C' € B.
(a) Show that P(ANBNC) = P(A)P(B)P(C) does not imply that the events A, B, C
are pairwise independent. (Hint: you only need to provide a counterexample).
Example 1.3.10 in Casella and Berger (2002)
Let the experiment consist of tossing two dice. The sample space is:

S =1{(1,1),(1,2),...,(1,6),(2,1),...,(2,6),....(6,1),....(6,6)}

This gives us 6 x 6 = 36 ordered pairs.
Define the following events:

A = {doubles appear} = {(1,1),(2,2),(3,3), (4,4), (5,5), (6,6)}
B = {the sum is between 7 and 10}
C = {the sum is 2 or 7 or 8}

The probabilities of these events are:

6 1 18 1 12
w5 [Bl=5=3 PO

P(A)
The probability of the intersection of the three events is:

P(AN BNC) = Probability that all three events occur

This happens only when the outcome is (4,4), since:
e It’s adouble = (4,4) € A

e 4+ 4 =38, which is between 7 and 10 = (4,4) € B

e The sumis 8 = (4,4) € C
Thus: 1
P(ANBNC)=—

And interestingly:
P(ANBNC)=P(A)-P(B)-P(C)==-=-= —
This could suggest that the events A, B, and C are independent. However,
P(BNC) = P(sum equals 7 or 8) = % # P(B) - P(C)
Similarly, it can be shown that: P(AN B) # P(A) - P(B)

Therefore, the condition: P(ANBNC) = P(A)- P(B) - P(C) is not enough to
guarantee pairwise independence.



(b) What additional conditions are needed to guarantee that A, B, and C' are mutually
independent?
Conditions for mutual independence:
e P(ANB) =P(A)P(B)
e P(ANC)=PA)PC)
e P(BNC)=P(B)PC)
e P(ANBNC)=PA)PB)PC)

5. A test is used to detect the presence of a disease. The test has the following properties:
e [f a patient has the disease, the test always returns a positive result.

e If a patient does not have the disease, the test returns a false positive with prob-
ability 0.005.
Suppose the probability of having the disease is 0.001.
If a patient receives a positive test result, what is the probability that they have the
disease?
From the question we know:

P(positive|disease) = 1
P(positive|no disease) = 0.005
P(disease) = 0.001

We are interested in the probability that a patient has the disease given that they test
positive: P(disease|positive).
Recall Bayes’ rule:

P(B|A)P(A) P(B|A)P(A)

PR S TTRE) T S PR

Assign the event of having the disease to A and the event of a positive test result to B.
We first use the Law of Total Probability to obtain the probability of having a positive
result, P(B):

P(positive) = P(disease)P(positive|disease) + P(no disease)P(positive|lno disease)
= 0.001 x 1+ 0.999 x 0.005 = 0.005995.

Then by Bayes’ rule, we have that:

P(positive|disease)P(disease)

P(disease|positive) = P(positive)
positive
1x0.001

=——=~0.1
0.005995 01668



6. A variable X is lognormally distributed if ¥ = In(X) is normally distributed with
2

mean g and variance 2. That is, fy(y) = 2;026_%(%) . Let the transformation be
defined by x = g(y) = ¢¥ so that y = ¢! (x) = In(z).
(a) Derive fx(x).

fela) = (57 ) | 212

1 _%(ln(m)—uf 1
pr— e o —
V2mo? T

(b) Derive E[X'] using My (¢). What are E[X] and V(X)?
We know that My (t) = e+27"* | Then
E[X'] = E[e"] = My(t) = 7577

1.2

E[X] = et*3°

7. Let us consider the Law of Iterated Expectations in the continuous case. Suppose that
E[Y] < co. Prove the following results:

(@ ElY] = B[]
ElY] = /_ h yf(y)dy (by definition of expectation)
= /OO Yy (/00 f(y, a:)da:) dy (by definition of marginal distribution)
= /oo Y (/OO f(y|x)f(x)dm) dy (by definition of conditional distribution)

— /_OO (/_ yf(y|x)dy) f(z)dx (by property of integral)

[e.9]

o0

= / ElY|X = z|f(x)dx (by definition of conditional expectation)

[e.e]

= E[E[Y|X]] (by definition of expectation)



(b) E[Y|X] = E[E[Y]X, AR X}
Note that

BIYIX =22 =2 = [ yf(yls.2)dy

In addition, note that

fly, @, 2) fv,2)  fly,, 2)

R P R T N T A
Then we find that
]E[E[Y\X, A ]X] = /_OO ElY|X =2,Z = 2] f(z|x)dz
= [ ([ sl 2y selone
- [ [ wttie Gy

= /_Z /_: yf(y, z|x)dydz

- /_OO yf(ylz)dy

— E[Y|X].

8. Assume there are n volunteers elegible to receive a treatment. For each unit ¢ €
{1,---,n}, define the treatment indicator

B 1 if unit 7 is treated
' 0 otherwise

Let (Dy,- -+, D,) be the vector of the treatment indicators of all units. Due to capacity
constraints, only n;(< n) units can be treated: " | D; = n;.
(a) What is the total number of distinct treatment assignment vectors (Dy, -, Dy,)

we can construct?

We are choosing ny out of n units, unordered, so there are (:1) possible ways.



We say that treatment is randomly assigned if (D, --- , D,) are random variables, and
if for any vector of n numbers (di,--- ,d,) € {0,1}" such that Y ", d; = ny,

—_

P<D1:d1>"'7Dn:dn): n
(nl)
That is, random assignment generates uniform treatment probabilities across units.

Assuming the treatment is randomly assigned, answer the following:
(b) For any unit i € {1,--- ,n}, what is P(D; = 1)?

(:1:11) _m

()

P(D;=1) =

(c) For any units ¢ # j, what is P(D; =1 A D; =1)7 Is it true that unit ¢ getting
treated is independent from unit j getting treated?

_ (771_722) _ nl(nl - 1)
(:1) n(n—1)

Notethat P(D; =1 A D;=1)# P(D;=1)P(D;=1)and P(D;=1| D; =1) #
P (D; =1). The intuition is that if D; =1, D; is less likely to be equal to 1 than
it D; = 0. If D; = 1, then there are only n; — 1 treatment seats left for n — 1
units, while if D; = 0, then there are still n; treatment seats left for n — 1 units.
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