Instructors: Camilo Abbate and Sofía Olguín

Problem Set 3 - Linear Algebra ¹

Due date: 09/12 (Friday) at 11:59pm

1. Question 1

Consider a random sample $\mathbf{X}_1, \dots, \mathbf{X}_n$ from a distribution with a mean μ and variance σ^2 . Consider the variance estimator $\hat{\sigma}_n^2$ defined as:

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

where $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ is the sample mean.

- (a) Show that $\hat{\sigma}_n^2$ is a biased estimator of σ^2 .
- (b) What is the bias?
- (c) How can you modify $\hat{\sigma}_n^2$ to make it unbiased?

2. Question 2

In class we saw that the MSE of an estimator $\hat{\theta}$ for a parameter θ can be decomposed as:

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + Bias(\hat{\theta})^2$$

Let's circle back to the comparison of the estimators

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

and

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

Recall from the Lecture notes that:

$$\operatorname{Var}(S_n^2) = \frac{2}{n-1}\sigma^4 \quad \text{and} \quad \operatorname{Var}(\hat{\sigma}_n^2) = \frac{2(n-1)}{n^2}\sigma^4$$
$$\operatorname{MSE}(S_n^2) = \frac{2}{n-1}\sigma^4 \quad \text{and} \quad \operatorname{MSE}(\hat{\sigma}_n^2) = \frac{2n-1}{n^2}\sigma^4$$

¹This problem set is adapted from materials prepared by former Math Camp instructors Seonmin Will Heo, Eunseo Kang, and Woongchan Jeon.

- (a) Find the expression for the ratio $\frac{Var(S_n^2)}{Var(\hat{\sigma}_n^2)}$.
- (b) Find the expression for the ratio $\frac{MSE(S_n)}{MSE(\hat{\sigma}_n^2)}$.
- (c) Do a ggplot graph in R to visualize the two ratios above as a function of n (start your graphs with n > 30). What do you observe? (Report the graphs and code)

3. Question 3. The Chi-Squared Distribution

The chi-squared distribution with k degrees of freedom is defined as the distribution of the sum of squares of k independent standard normal random variables:

$$Q = \sum_{i=1}^{k} Z_i^2 \sim \chi^2(k)$$

where $Z_i \stackrel{\text{i.i.d.}}{\sim} N(0,1)$ for $i = 1, 2, \dots, k$.

In this exercise, you will visualize the shape of the $\chi^2(k)$ distribution for different ks using simulations.

- (a) Generate R = 1,000 random samples from the $\chi^2(5)$ distribution as follows:
 - i. For each replication r = 1, 2, ..., R:
 - Generate a random vector $\mathbf{z}^{(r)}=(z_1^{(r)},z_2^{(r)},\dots,z_5^{(r)})$ where each $z_i^{(r)}\sim N(0,1)$
 - Compute $Q^{(r)} = \sum_{i=1}^{5} (z_i^{(r)})^2$
 - ii. Store all $Q^{(r)}$ values in a vector \mathbf{Q}
- (b) Create a histogram of the simulated values **Q** with 60 bins, scaled to have unit area (i.e., a density histogram).
- (c) On the same graph, plot the theoretical probability density function of the $\chi^2(5)$ distribution.
- (d) (Optional) Repeat the exercise with different degrees of freedom (e.g., k = 10, 50, 100) and comment on how the shape of the distribution changes. Report the graphs.

4. Question 4. Randomization Inference

Use R to solve the following problem and report your code.

Consider the following extremely small sample from the GAIN Experiment.

Table 1: Six Observations from the GAIN Experiment

Individual	Potential	Potential	Treatment	Observed
	Outcome $Y_i(0)$	Outcome $Y_i(1)$	$ m D_i$	Outcome $\mathbf{Y_i}^{Obs}$
1	66	?	0	66
2	0	?	0	0
3	0	?	0	0
4	?	0	1	0
5	?	607	1	607
6	?	436	1	436

The fundamental problem of causal inference is that we can never observe both potential outcomes for any single individual. We only observe:

$$Y_i^{Obs} = D_i \cdot Y_i(1) + (1 - D_i) \cdot Y_i(0)$$

A common estimator for the Average Treatment Effect (ATE) is the simple difference in means from the sample:

$$\hat{\tau} = \frac{1}{N_1} \sum_{i:D_i=1} Y_i - \frac{1}{N_0} \sum_{i:D_i=0} Y_i$$

where N_1 and N_0 are the number of treated and control units, respectively.

Calculating $\hat{\tau}$

- (a) Calculate the mean outcome for the treatment group $(D_i = 1)$.
- (b) Calculate the mean outcome for the control group $(D_i = 0)$.
- (c) Calculate the simple difference in means $(\hat{\tau})$. Based **only** on this result, what would you conclude about the effect of the program?

Fisher's Exact Test

We will now use Randomization Inference to test the sharp null hypothesis of no treatment effect for any individual, formalized as:

$$H_0: Y_i(1) = Y_i(0) \quad \forall i$$

Under this null hypothesis, all potential outcomes are known and fixed. The observed differences are solely due to the random assignment of treatment D_i . Notice that if we assume the null is true, table 1 becomes:

Table 2: Six Observations from the GAIN Experiment (Under Null Hypothesis)

Individual	Potential	Potential	Treatment	Observed
	Outcome $Y_i(0)$	Outcome $Y_i(1)$	$\mathbf{D_i}$	Outcome $\mathbf{Y_i}^{Obs}$
1	66	66	0	66
2	0	0	0	0
3	0	0	0	0
4	0	0	1	0
5	607	607	1	607
6	436	436	1	436

And we can derive the **randomization distribution** of any test statistic: a function of the assignment vector \mathbf{D} and the observed outcomes \mathbf{Y}^{obs} . This statistic varies only because of the random assignment of treatment (\mathbf{D}) , not because of any uncertainty about the potential outcomes.² Consider the test statistic $T(\mathbf{D}, \mathbf{Y}^{obs})$, basically $\hat{\tau}$:

$$T = T(\mathbf{D}, \mathbf{Y}^{\text{obs}}) = \frac{1}{3} \sum_{i=1}^{6} D_i \cdot Y_i^{\text{obs}} - \frac{1}{3} \sum_{i=1}^{6} (1 - D_i) \cdot Y_i^{\text{obs}}.$$

- (a) For the observed assignment vector $\mathbf{D}^{obs} = (0,0,0,1,1,1)$, calculate the value of the test statistic, T. You can call this T^{obs} (Repeating (c) from last question.)
- (b) How many possible **D** vectors are there for assigning the three treatment assignments $(D_i = 1)$ to these six individuals? This is the number of possible permutations of the assignment vector.
- (c) The randomization distribution of the test statistic is generated by calculating $T(\mathbf{D}, \mathbf{Y}^{obs})$ for every possible assignment vector \mathbf{D} , holding the vector of outcomes fixed. For each possible assignment, calculate the T.
- (d) Plot a histogram of T calculated under all possible random assignments. This histogram represents the exact distribution of the test statistic under the sharp null hypothesis.
- (e) On the histogram, mark the value of T^{Obs} calculated in (a).

²There is no missing data issue.

- (f) Find the 2.5th percentile and the 97.5th percentile of this randomization distribution. These form a 95% reference interval for the test statistic under the null hypothesis.
- (g) Is the observed test statistic T^{obs} from part (a) inside or outside this 95% interval? Based on this, would you reject or fail to reject the null hypothesis H_0 at the 5% significance level?
- (h) (Optional) Calculate the two-sided **p-value**. This is the probability, under the null hypothesis, of observing a value of the test statistic that is as extreme in absolute value than the one actually observed. Formally, it is the proportion of assignment vectors for which $|T(\mathbf{D}, \mathbf{Y}^{obs})| \geq |T^{obs}|$.
- (i) (Optional) Based on this p-value, what do you conclude about the null hypothesis?

Naturally, for a larger dataset, performing the Fisher exact test gets computationally intensive, so it's rarely seen in practice. However, this is a pretty cool paper that uses the randomization inference framework to re-evaluate the results of several high-profile RCTs.