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Topic 5: Continuity and Differentiability1

Keywords for Today

� Continuity

� Differentiability

� Derivatives

� Chain Rule

� Linearization

� Taylor’s Theorem

� Mean Value Theorem

� L’Hôpital’s Rule

Continuity

Definition 1 (Continuity at a Point)

A function f : R → R is continuous at a point c ∈ R if:

lim
x→c

f(x) = f(c)

Formally, this means: ∀ϵ > 0, ∃δ > 0 such that |f(x)−f(c)| < ϵ whenever 0 < |x−c| < δ.

1Instructors: Camilo Abbate and Sofia Olguin. This note was prepared for the 2025 UCSB Math Camp
for Ph.D. students in economics. It incorporates materials from previous instructors, including Shu-Chen
Tsao, ChienHsun Lin, and Sarah Robinson.
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Let us compare this definition to the epsilon-delta definition of a limit. The difference in the
epsilon-delta definition is that we changed |f(x)− L| < ϵ to |f(x)− f(c)| < ϵ.

That is, we say that function f(x) is continuous at point c if f(c) is exactly the L on the
epsilon-delta definition of a limit. This means there are no jumps, breaks, or holes at that
point c.
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Definition 2 (Continuity on an Interval)

A function f : R → R is continuous on an interval I ⊆ R if it is continuous at every
point c ∈ I.

Definition 3 (Continuity of a Function)

A function f : R → R is continuous on its entire domain if it is continuous at every
point in its domain.

Exercise 1

Determine whether the following functions f are continuous on [−1, 1].

(1) f(x) = |x|
(2) f(x) = x2

(3) f(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

(4) f(x) =

{
|x| if x is rational

−x2 otherwise

There are three important properties of a continuous function.

Theorem 1: Intermediate Value Theorem

If f : [a, b] → R is continuous on the closed interval [a, b], and L is any number between
f(a) and f(b) (min{f(a), f(b)} < L ≤ min{f(a), f(b)}), then there exists at least one
c ∈ [a, b] such that:

f(c) = L
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(Figure source: The Jenkins Comic).

Exercise 2

In fact, the information in the comic above is not sufficient to ensure the dad’s ”argu-
ment” to hold. There are some implicit conditions assumed.

Let f(t) be the mapping from time to the dad’s height. Let f(a) be the dad’s height at
birth, and let f(b) be the dad’s height now. Let L be the child’s height now.

We observe in the comic that L < f(b). Which other conditions do we need to guarantee
the statement that ”The dad used to be just as tall as the son”?

The intermediate value theorem may sound trivial, but note that we don’t need f to be
differentiable or monotone.

Theorem 2: Extreme Value Theorem

If f : [a, b] → R is continuous on the closed interval [a, b], then f attains both a maximum
and a minimum value on [a, b].

In other words, there exist points c, d ∈ [a, b] such that:

f(c) ≤ f(x) ≤ f(d) for all x ∈ [a, b]
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The extreme value theorem is fundamental in optimization.

Exercise 3

Consider f(x) = (x− 1)2.

(1) Does f attain both maximum and minimum values on [0, 2]?
(2) Does f attain both maximum and minimum values on (0, 2)? Which part of Theorem
2 is violated?

Exercise 4

Consider

f(x) =

{
x if x ̸= 1

−1 if x = 1

Does f attain both maximum and minimum values on [0, 1]? Which part of Theorem 2
is violated?

Theorem 3: Fixed Point Theorem

If f : [a, b] → [a, b] is continuous, then there exists at least one point c ∈ [a, b] such that:

f(c) = c

The fixed-point theorem is fundamental in game theory. One of the most famous application
of the fixed-point theorem is the Nash equilibrium. We also use the fixed-point theorem to
derive the steady states in macroeconomics.
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There is a corresponding fixed point theorem in RN , which is called the Brouwer’s fixed point
theorem. The intuition is as followed: Imagine compressing a sponge ball inward. Then,
there will be at least one point inside the sponge ball that remains fixed.

The intermediate value theorem and extreme value theorem also hold in RN . Let’s define
the continuity in RN formally.

Definition 4 (Continuity at a point in Rn)

A function f : Rn → Rm is continuous at a point c = (c1, c2, . . . , cn) ∈ Rn if:

lim
x→c

f(x) = f(c)

Formally, this means: ∀ϵ > 0, ∃δ > 0 such that ∥f(x)−f(c)∥ < ϵ whenever ∥x−c∥ < δ.

Here, ∥ · ∥ denotes the Euclidean norm, which for a vector x = (x1, x2, . . . , xn) in Rn is
given by:

∥x∥ =
√

x2
1 + x2

2 + · · ·+ x2
n.

Definition 5 (Continuity on a Set in Rn)

A function f : Rn → Rm is continuous on a set S ⊆ Rn if it is continuous at every point
c ∈ S.
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Differentiability

Definition 6 (Difference Quotient)

Let f : R → R be a function. We define the difference quotient of f as follows:

f(x′)− f(x)

x′ − x
for any x, x′ ∈ X.

Intuitively, this quotient is the slope of f across the points x and x′.

If we make the two points extremely close, then the quotient becomes the slope at the point,
or the derivative.

Definition 7 (Derivatives)

Let f : R → R be a function defined on some open interval containing a point a.

The derivative of f at the point a, denoted by f ′(a), is defined as the limit (if it exists):

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

Definition 8 (Differentiability)

A function f is said to be differentiable at a point a if the derivative f ′(a) exists.

If f is differentiable at every point in an interval, we say that f is differentiable on that
interval.

Theorem 4: Differentiability implies Continuity

If a function f is differentiable at a point a, then f is continuous at a.

However, note that the continuity does not imply differentiability.
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Exercise 5

Determine if f(x) = |x| is continuous at x = 0. Determine if f(x) = |x| is differentiable
at x = 0.

Here are some derivatives for common functions.

(1) Constants: for any r ∈ R,
f(x) = r ⇒ f ′(x) = 0.

(2) Powers of x: for any k ∈ R \ {0},

f(x) = xk ⇒ f ′(x) = kxk−1.

(3) Polynomial functions

f(x) = anx
n + · · ·+ a1x+ a0 =

n∑
k=0

akx
k

⇒ f ′(x) = nanx
n−1 + · · ·+ a1 =

n∑
k=1

kakx
k−1.

(4) The exponential function:

f(x) = exp(x) ⇒ f ′(x) = exp(x).

(5) The natural logarithm function:

f(x) = log(x) ⇒ f ′(x) =
1

x
.

Theorem 5

Let f , g are defined on [a, b] and are differentiable at x ∈ [a, b]. Then the functions
f + g, fg, and f/g are differentiable, and

(1) (f + g)′(x) = f ′(x) + g′(x);

(2) (fg)′(x) = f ′(x)g(x) + f(x)g′(x);

(3)
(

f
g

)′
(x) = f ′(x)g(x)−f(x)g′(x)

g2(x)
.

We sometimes use the differential operator d
dx

to express the operation ”taking derivatives.”
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Hence, when f is differentiable,

d

dx
f(x) ≡ df

dx
(x) ≡ f ′(x).

If we define ∆ as:
∆x = x′ − x, ∆f(x) = f(x′)− f(x)

then the difference quotient can then be expressed as ∆f(x)
∆x

. When we take the limit to the

difference quotient, it becomes the notation that we are familiar with, df(x)
dx

.

When you take derivatives of the composite functions, you will need to apply the chain rule.

Theorem 6

Suppose f : X → Y is continuous on [a, b], f ′(x) exists at some point x ∈ [a, b], g is
defined on an interval I ∈ Y , and g is differentiable at f(x).

Let h(x) = g ◦ f(x) = g(f(x)), then

h′(x) = g′(f(x))f ′(x)

.

Exercise 6

Find the derivative of the following functions.

(1) f(x) =
√
x− 2

(2) f(x) = log(x2)

(3) f(x) = (log x)2

There is a strong connection between derivatives and monotonic behavior.
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Theorem 7

Suppose f is differentiable in the open interval (a, b). Then

(1) f is monotonically increasing if f ′(x) ≥ 0;

(2) f is monotonically decreasing if f ′(x) ≤ 0;

(3) f is a constant if f ′(x) = 0.

Linearization

An application of derivatives is to approximate the function values around a specific point
(say, a). Let’s review the definition of derivatives of f at a. Linearization is used in macroe-
conomics where the functions of interest might not have analytical representation.

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

By rearranging the terms,

lim
h→0

{f(a+ h)− f(a)

h
− f ′(a)} = 0

Define ε(h) = f(a+h)−f(a)
h

−f ′(a), and note that limh→0 ε(h) = 0. We can rearrange the terms
in this definition of ε(h) to have:

f(a+ h) = f(a) + f ′(a)h+ ε(h)h

Define x = a+ h, then we have:

f(x) = f(a) + f ′(a)(x− a) + ε(x− a)(x− a)

Hence we can loosely write
f(x) ≈ f(a) + f ′(a)(x− a).

With this process, we approximate f(x) with a linear function of the intercept of f(a) and
a slope of f ′(a). This is called a linear approximation of f at a.
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x

f(x)

f(x)

a

f(a) + f ′(a)(x− a)

Higher Order Derivatives

Let g = df
dx
. If g is also differentiable, we can denote

g′ ≡ d

dx

df

dx
≡ d2f

(dx)2
≡ f ′′.

This function f ′′ is called the second order derivative of f . The interpretation of f ′′ is
the change in slopes. We can further define the higher order derivatives with the similar
manner, and we denote the k-th derivative of f with f (k).

We say f is in the family of functions Ck if the derivatives f ′, f ′′,. . . ,f (k) exists and are
continuous. The function f is smooth or infinitely differentiable if for any k ∈ N, f (k)

exists, and we denote f ∈ C∞.

Taylor's theorem

Taylor’s theorem provides a way to approximate the function values around a specific point.
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Theorem 8

Let f : R → R be a function that is (n+1)-times continuously differentiable on an open
interval containing the point a.

Then, ∀x in this interval, the function f(x) can be expressed as theTaylor polynomial:

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n +Rn

where the remainder term Rn(x) is given by the Lagrange form of the remainder:

Rn =
f (n+1)(c)

(n+ 1)!
(x− a)n+1

for some c between a and x.

Exercise 7

Write out the Taylor polynomial of f(x) around point a, with n = 0.
Write out the Taylor polynomial of f(x) around point a, with n = 1. Compare it with
the linearization.

Suppose f(x) = x2 and a = 1. Draw the above two Taylor polynomials.

When n = 0, the Taylor theorem is called the mean value theorem.

Theorem 9: The mean value theorem

Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b).

Then, there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

Here is an exercise for writing down a model and derive results using math tools.
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Exercise 8

The distance between downtown SB and UCSB is 10 miles. Suppose your friend tells
you it took them 7.9 minutes to drive from downtown SB to UCSB.

Define speeding as there exists at least one point in time such that the speed, which
exists in R, is greater than 75 miles per hour. Use the mean value theorem to prove
that your friend was speeding according to this definition.a

aExtension: What if your friend’s vehicle can teleport? Can we still prove that they are speeding
according to this definition? If not, which condition for the mean value theorem is violated?

L'Hôpital's rule

L’Hôpital’s rule is used to find the limit of a quotient of two functions when the limit results
in an indeterminate form, such as 0

0
or ∞

∞ .

Theorem 10: L’Hôpital’s rule

Suppose functions f and g are both differentiable on an open interval I containing c,
except possibly at c itself.

If:

� limx→c f(x) = 0 and limx→c g(x) = 0, or

� limx→c f(x) = ±∞ and limx→c g(x) = ±∞,

and the limit of their derivatives exists:

lim
x→c

f ′(x)

g′(x)
= L,

Then,

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
= L.
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Exercise 9

1. Evaluate the following limit: limx→0
ex−1
x

. Find the limit if it exists.

2. Evaluate the following limit: limx→0
|x|
x
. Find the limit if it exists.
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Topic 6: Topology on Metric Space1

Keywords for Today

Euclidean space, lp space, open and closed ball, open and closed set, compact set,
Heine-Borel Theorem, convext set, convex and concave function, quasiconvex and
quasiconcave function, Jensen’s inequality, Cauchy-Schwarz inequality, Hölder’s in-
equality, Minkowski inequality

Metric Space

We studied the metric function last week, which measures the “distance” between
elements in a set. Let’s review the definition of a metric function:

Definition 1 (Metric Function and Metric Space)

Let X be a set. If there exists a metric function d : X ×X → R+ satisfying
the following conditions:

(1) d(x,x) = 0 for every x ∈ X

(2) d(x,y) > 0 for every x ̸= y ∈ X

(3) d(x,y) = d(y,x) for every x,y ∈ X

(4) d(x,y) ≤ d(x, z) + d(y, z) for every x,y, z ∈ X

then (X, d) is called a metric space. We say that d is a metric on X.

The last property is also called triangle inequality.

For example, the set X can be X = Rn. Then, there are several different metrics d
defined on Rn to form a metric space (Rn, d). Among the metrics defined on Rn, the

1Instructors: Camilo Abbate and Sofia Olguin. This note was prepared for the 2025 UCSB
Math Camp for Ph.D. students in economics. It incorporates materials from previous instructors,
including Shu-Chen Tsao, ChienHsun Lin, and Sarah Robinson.
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most commonly used on is the Euclidean distance.

Definition 2 (Euclidean Metric)

Let x,y ∈ Rn. The Euclidean distance of x and y is defined as

d(x,y) = ||x− y||2 =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.

When X = Rn and d is the Euclidean metric, we often call this metric space an
Euclidean space. However, Euclidean metric is not the only metric that can be
defined on Rn.

Let’s see an example to illustrate the motivation of having metrics other than the
Euclidean metric. Let’s consider a network of individuals, where the ”distances”
between individuals are all identical. This modeling method motivates the following
metric space.

Exercise 1

Let X be any set, and x,y ∈ X. Define

d(x,y) =

{
1 if x ̸= y

0 if x = y

Verify that (X, d) is a metric space.

lp space

In Rn, each element is x = (x1, x2, ..., xn), where each xi ∈ R. What if we are
interested in the metric for elements look like x = ( x1, x2, ...︸ ︷︷ ︸

infinite of them

)?

When x = (x1, x2, ..., xn),
∑n

i=1 x
2
i is finite. However, when x = (x1, x2, ...),

∑∞
i=1 x

2
i

is not necessarily finite. We focus on the cases where
∑∞

i=1 x
2
i is finite.
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Definition 3 (l2 Space)

Define

l2 =

{
(x1, x2, ...) |

∞∑
i=1

x2
i < ∞

}

And define the metric between x,y ∈ l2:

d(x,y) = ||x− y||2 =

(
∞∑
i=1

|xi − yi|2
)1/2

Then, (l2, d) is a metric space. We call it a l2 space.

The l2 space can be generalized to a lp space, where p ≥ 1.

Definition 4 (lp Space)

Define

lp =

{
(x1, x2, ...) |

∞∑
i=1

|xi|p < ∞

}

And define the metric between x,y ∈ lp:

d(x,y) = ||x− y||p =

(
∞∑
i=1

|xi − yi|p
)1/p

Then, (lp, d) is a metric space. We call it a lp space.

Exercise 2

Verify that l1 space (i.e., the lp space with p = 1) is a metric space.
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Open Ball and Closed Ball

Definition 5 (Open Ball)

For a metric space (X, d), an open ball centered at x ∈ X with radius r > 0 is
defined as:

B(x, r) = {y ∈ X : d(x, y) < r}

Definition 6 (Closed Ball)

For a metric space (X, d), an closed ball centered at x ∈ X with radius r > 0 is
defined as:

B(x, r) = {y ∈ X : d(x, y) ≤ r}

An open ball includes all points strictly within the radius but excludes the boundary
points where the distance to x is exactly r. A closed ball, on the other hand, includes
all points within the radius including those on the boundary.

Note that if we try to visualize an open ball (or a closed ball), it may not look like a
”ball” if we are considering a metric space other than the Euclidean space.

Exercise 3

Let X be R. For any x, y ∈ X, define

d(x, y) = |x− y|

Draw the open ball
B(x = 3, r = 2)

Exercise 4

Let X be R2. For any x,y ∈ X, define

d(x,y) =
√

(x1 − y1)2 + (x2 − y2)2

Draw the open ball
B(x = (0, 0), r = 2)
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Exercise 5

Let X be R2. For any x,y ∈ X, define

d(x,y) = |x1 − y1|+ |x2 − y2|

Draw the open ball
B(x = (0, 0), r = 2)

Exercise 6

Let X be R2. For any x,y ∈ X, define

d(x,y) = max{|x1 − y1|, |x2 − y2|}

Draw the open ball
B(x = (0, 0), r = 2)

Exercise 7

Let X be any set. For any x,y ∈ X, define

d(x,y) =

{
1 if x ̸= y

0 if x = y

Write down the sets
B(x, r = 1.1)

and
B(x, r = 0.9)

Open Set and Closed Set

After having the definition of open ball, we can define an ”open set.”
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Definition 7 (Open Set)

Let (X, d) be a metric space. We call V ⊂ X an open set if:

∀x ∈ V, ∃r > 0

such that
B(x, r) ⊂ V

In other words, for every point x in the set V , we draw an open ball centered at x,
and the open ball in entirely inside V .

Definition 8 (Closed Set)

Let (X, d) be a metric space. We call F ⊂ X a closed set if its complement
X \ F is an open set.

Theorem 1

Any open ball B(X, r) is an open set, and any closed ball B(X, r) is a closed set.

The first is easy to see, but the second requires some proof. However, we will skip
the proof in this note.

Exercise 8

Let X be R. For any x,y ∈ R, define d(x,y) = |x − y|. Check if the following
sets are open or closed.

1. (0, 1)

2. (0,∞)

3. [0,∞)

4. [0, 1]

As the definition of closed set entails the complement set, one might think that a set
is either open or closed (but not both). However, this guess is not true.
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Exercise 9

Let X be R. For any x,y ∈ R, define d(x,y) = |x−y|. Verify that the following
sets are both open and closed.

1. ∅
2. R

Let (X, d) be any metric space. Verify that the following sets are both open and
closed.

1. ∅
2. X

Theorem 2

The union of any collection of open sets is always an open set, and the inter-
section of any finite number of open sets is always an open set.

The union of any finite number of closed sets is always a closed set, and the
intersection of any collection of closed sets is always a closed set.

Note that the intersection of an infinite collection of open sets may not be open.
Besides, the union of an infinite collection of closed sets may not be closed.

Exercise 10

For the following two questions, let X be R. For any x,y ∈ R, define d(x,y) =
|x− y|.

(1) Consider In = (− 1
n
, 1
n
), n = 1, 2, ....

For any n, is In an open set or a closed set (or both)?
Find the intersection of an infinite collection, that is, find ∩∞

n=1In. Is it an open
set or a closed set (or both)?
(2) Consider Jn = [ 1

n
, 1− 1

n
], n = 1, 2, ....

7
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For any n, is In an open set or a closed set (or both)?
Find the union of an infinite collection, that is, find ∪∞

n=1Jn. Is it an open set or
a closed set (or both)?

Compact Set

For economists, the main goal of learning open ball and open set is to derive the
concept of a ”compact” set. A compact set is a set that is ”small” in a certain
way, and various theorems in optimization or statistics rely on assuming that we are
analyzing a compact set.

Definition 9 (Open Cover)

A cover of a set A, denoted as F , is a collection of sets whose union includes A.
In math, it means A ⊂ F . Or, equivalently,

∀x ∈ A, ∃V ∈ F such that x ∈ V

A cover of a set A, denoted as F , is an open cover if it is a collection of open
sets whose union includes A.

Exercise 11

Consider F = {( 1
n
, 2
n
)|n = 1, 2, ...}).

(1) Is F a collection of open sets?
(2) Is F an open cover of (0, 1)?

Definition 10 (Subcover)

A subcover is a smaller collection of sets from the original cover that still covers
the entire set A.

8
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Definition 11 (Compact Set)

Let (X, d) be a metric space. A ⊂ X.

A set A is called a compact set if every open cover of A has a finite subcover. In
other words,

∀ open cover F , ∃V1, V2, ..., Vn ∈ F such that A ⊂ ∪n
i=1Vi

This means that no matter how you try to cover the set with open sets, you can
always find a finite number of those sets that still cover all of A. In other words,
compact sets don’t have ”holes” or ”gaps” that require an infinite number of pieces
to cover them completely.

Exercise 12

Use the definition of compact, prove that (0, 1) ∈ R1 is not compact. (Hint:
consider the open cover F = {( 1

n
, 2
n
)|n = 1, 2, ...})

One important property of a compact set is that it is a bounded set and a closed set.

Definition 12 (Bounded Set)

Let (X, d) be a metric space. A set A ⊂ X is called bounded if:

∃M > 0 and x0 ∈ X such that d(x, x0) ≤ M for all x ∈ A

Exercise 13

Prove that (0, 1) is bounded.

A bounded set is one where the points don’t stretch out infinitely far from each other.
You can think of a bounded set as one that can be enclosed within a ”box” or ”ball”
of a certain finite size.

9
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Theorem 3

Let (X, d) be a metric space. If A ⊂ X is compact, then A is bounded and
closed.

Generally speaking, the reverse is not always true for all metric space. However, the
reverse is true in an Euclidean space.

Theorem 4: Heine-Borel Theorem

Let (X, d) be a metric space, where X = Rn and d is the Euclidean metric.

A ⊂ X is compact if and only if A is closed and bounded.

Heine-Borel Theorem is the most important one of our lecture today. This theorem is
often how we verify if a set in Rn is compact. When we are focusing on an Euclidean
space, we don’t need to verify the compactness via constructing finite subcovering of
any open cover. We only need to verify that the set is bounded and closed.

Exercise 14

Are the following sets bounded? Are they closed? Are they compact?

1. [0, 1]

2. (0, 1)

3. [0,∞)

4. (0,∞)

Convex Set

Next, we introduce another important concept widely used in economics and opti-
mization: convex set.

10
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Definition 13

A set E ⊂ Rn is a convex set if:

∀x,y ∈ E and λ ∈ [0, 1] , the point λx+ (1− λ)y ∈ E

Intuitively, the combination λx+(1− λ)y is a point on the section connecting x and
y. A convex set is a set that contains all sections between two points in the set. In
other words, if you can connect two points in the set E, where some parts on the
connecting section is not in the set E, then the E is not convex.

x

y

λx+ (1− λ)y

x

y

λx+ (1− λ)y

Consider any collection of points p1, . . . , pn. The linear combination

n∑
i=1

αipi = α1p1 + · · ·+ αnpn, where
n∑

i=1

αi = 1, αi ≥ 0 for every i

is called a convex combination of points p1, . . . , pn.

11
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Convex Function

Definition 14 (Convex/concave functions)

Let f : X → R. We say f is a convex function if for any x0, x1 ∈ X, λ ∈ [0, 1],

f(λx0 + (1− λ)x1) ≤ λf(x0) + (1− λ)f(x1).

We say f is a concave function if for any x, y ∈ X, λ ∈ [0, 1],

f(λx0 + (1− λ)x1) ≥ λf(x0) + (1− λ)f(x1).

We say f is a linear function if f is convex and concave.

If f is a concave function, −f is a convex function. This small trick is frequently used
in programming.

Notice very carefully the difference between a convex set and a convex function. The
level set (e.g., the contour line for f(x, y)) of a convex function is always a convex
set.

x

f(x)

x

f(x)

convex function concave function

Here is an useful theorem of using derivatives to verify the convexity of a function
f : R → R. We will discuss the multivariate case later.

Theorem 5

For a function f : R → R that is differentiable on an interval I, the the function

12
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f is convex if its first derivative is increasing on I. That is,

f ′(x1) ≤ f ′(x2) whenever x1 < x2 ∈ I

For a function f : R → R that is twice differentiable on an interval I, the the
function f is convex if its second derivative is positive on I. That is,

f ′′(x) > 0 ∀x ∈ I

To verify the concavity of a function f , we can just verify the convexity of −f .

Definition 15 (Quasiconvex/quasiconcave functions)

Let f : X → R. We say f is a quasiconvex function if for any x0, x1 ∈ X,
λ ∈ [0, 1],

f(λx0 + (1− λ)x1) ≤ max{f(x0), f(x1)}.

We say f is a quasiconcave function if for any x, y ∈ X, λ ∈ [0, 1],

f(λx0 + (1− λ)x1) ≥ min{f(x0), f(x1)}.

We say f is a quasilinear function if f is quasiconvex and quasiconcave.

x

f(x)

x

f(x)

quasiconvex function quasiconcave function

Theorem 6

If f is convex, then it is quasiconvex. If f is concave, then it is quasiconcave.

13
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Some Common Inequalities

Now, we summarize some inequalities commonly used in economics and statistics.

Theorem 7: Jensen’s Inequality in Rn

Consider any x1, ...,xn ∈ Rn, and any λ1, ..., λn ∈ [0, 1] such that
∑n

i=1 λi = 1.
This forms a convex combination

∑n
i=1 λixi. Suppose f is convex.

The Jensen’s inequality states:

f

(
n∑

i=1

λixi

)
≤

n∑
i=1

λif(xi)

Jensen’s inequality is basically restating the definition of convex function.

Theorem 8: Cauchy-Schwarz Inequality in Rn

Consider any x,y ∈ Rn, where x = (x1, ..., xn) and y = (y1, ..., yn). The Cauchy-
Schwarz inequality states:(

n∑
i=1

xiyi

)2

≤

(
n∑

i=1

x2
i

)(
n∑

i=1

y2i

)

For example, in R1, the Cauchy-Schwarz inequality states (xy)2 ≤ x2y2.

Theorem 9: Hölder’s Inequality in Rn

Consider any x,y ∈ Rn, where x = (x1, ..., xn) and y = (y1, ..., yn). The Hölder’s
inequality states:

n∑
i=1

|xiyi| ≤

(
n∑

i=1

|xi|p
) 1

p
(

n∑
i=1

|yi|q
) 1

q

for all p, q ∈ [1,∞) and 1
p
+ 1

q
= 1.

14
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Note that the Hölder’s inequality is a generalization of Cauchy-Schwarz inequality.

Exercise 15

Show that when p = q = 2, the Hölder’s inequality implies Cauchy-Schwarz
inequality. (Hint: there is one more step after letting p = q = 2, which involves
|a+ b| ≤ |a|+ |b|. )

Theorem 10: Minkowski inequality in Rn

Consider any x,y ∈ Rn, where x = (x1, ..., xn) and y = (y1, ..., yn). The
Minkowski inequality states:(

n∑
i=1

|xi + yi|p
) 1

p

≤

(
n∑

i=1

|xi|p
) 1

p

+

(
n∑

i=1

|yi|p
) 1

p

for all p ∈ [1,∞).

Exercise 16

Apply appropriate inequalities to the following questions.

(1) When we have the data x = (x1, ..., xn) and y = (y1, ..., yn), we often evaluate

their relationship by calculating the correlation coefficient: r =
∑n

i=1(xi−x)(yi−y)√∑n
i=1(xi−x)2

√∑n
i=1(yi−y)2

.

Prove that −1 ≤ r ≤ 1 for all x,y ∈ Rn.

(2) Prove that (a+b+2c+d
5

)8 ≤ a8+b8+2(c)8+d8

5
.

(3) In undergraduate statistics, we learned that the variance of X can be written
as V ar(X) = E[X2]− E[X]2. Prove that E[X2]− E[X]2 ≥ 0 using algebra (i.e.,
not using the property that V ar(X) ≥ 0 directly). For simplicity, consider that
X is a discrete random variable with some p.d.f. P (X).

From (3), you might wonder if E[X2]−E[X]2 ≥ 0 also work for a continuous random
variable X. More generally, if the inequalities also work for integrals instead of
summation. The answer is yes, and we will revisit these inequalities in the lecture for
integrals.
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Topic 7: Multivariate Derivatives1

Keywords for Today

Total differentiation, partial differentiation, Jacobian matrix, gradient, total differen-
tial, Hessian matrix

Multivariate Functions

Consider a production function with 3 inputs and 2 outputs:

F (y1, y2, y3) =

[
F 1(y1, y2, y3)

F 2(y1, y2, y3)

]
=

[
y1y2y3
yα1 y

1−α
2

y3

]
.

In such a case, we say F : R3 → R2 to be a multivariate (real) function with 3
variables, and F 1, F 2 here are the component functions of F .

Note that there is a Greek letter α which is not a variable, but it still affects the
function values. In such a case, we call α a parameter, where sometimes we write

F (y1, y2, y3;α).

Consider firstly f : R → R. Apply the linearization we mentioned before:

lim
h→0

f(x+ h)− f(x) + ah

h
= 0

where a is the derivative evaluated at x ∈ I for some interval I ⊂ R.

We can extend this observation to multivariate functions.

1Instructors: Camilo Abbate and Sofia Olguin. This note was prepared for the 2025 UCSB
Math Camp for Ph.D. students in economics. It incorporates materials from previous instructors,
including Shu-Chen Tsao, ChienHsun Lin, and Sarah Robinson.
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Total Differentiation

Definition 1 (Total Differentiation)

Suppose f : Rn → Rm, and f maps an open set E ⊂ Rn to Rm.

We say f is differentiable at x ∈ E ⊂ Rn if:

∀x ∈ E, ∃ m× n matrix A(x) such that

lim
||h||→0

||f(x+ h)− f(x) + A(x)h||
||h||

= 0

where h ∈ Rn.

In this case, we say the transformation A(x) is the total differentiation of f ,
denoted as

Df(x) = A(x).

Exercise 1

(1) What is the dimension of the 0 in ||h|| → 0? Why is h ∈ Rn but not Rm or
other dimensions?

(2) Write out the definition of total differentiation when m = 1 and n = 1.
Compare it with the univariate differentiation that we studied.

Total differentiation involves finding the differential of a function that depends on
more than 1 variable (e.g., n variables here).

Partial Differentiation

We also define another type of differentiation: the partial differentiation.

2
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Partial differentiation focuses on finding the derivative of a function with respect to
one variable while holding the other variables constant. We call this derivative a
partial derivative.

Definition 2 (Partial Derivative)

Suppose f : Rn → Rm, and f maps an open set E ⊂ Rn to Rm.

For each i = 1, 2, ..., n, the partial derivative of f with respect to the i-th
component of x = (x1, x2, . . . , xn) at a point x ∈ E is defined as:

lim
h→0

f(x1, . . . , xi + h, . . . , xn)− f(x1, . . . , xi, . . . , xn)

h

The partial derivative of f with respect to xi is denoted as

Dif(x) or
∂f

∂xi

(x) or fi(x).

Exercise 2

Consider n = 3 and m = 2. What is the dimension of Df(x)? What is the
dimension of D1f(x)? How many partial derivatives are there?

The following theorem links total differentiation to partial derivatives.

Theorem 1

Suppose f : Rn → Rm, and f maps an open set E ⊂ Rn to Rm.

Then, f is differentiable at x ∈ E if and only if each of the component function
fk is differentiable at x.

3
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Furthermore,

Df(x) =
[
D1f(x) · · · Dnf(x)

]
=


D1f

1(x) · · · Dnf
1(x)

...
. . .

...

D1f
m(x) · · · Dnf

m(x)

 .

We also call the following matrix the Jacobian matrix:

J(f) =
[
D1f · · · Dnf

]
=


D1f

1 · · · Dnf
1

...
. . .

...

D1f
m · · · Dnf

m



For simplicity, let’s start with the case when m = 1. This is an example to see the
difference between a total differentiation and a parital differentiation.

Exercise 3

Let U : R2 → R be a utility function of two goods: coffee c and coffee mate m.

Let U(c,m) = log(c)× log(m), where the consumption of coffee mate is propor-
tional to the consumption of coffee, specifically m = 0.05c (i.e., 1 ounce of coffee
mate is consumed with every 20 ounces of coffee).

(1) What is the dimension of the total differentiation DU(c,m)? Find DU(c,m).

(2) What is the economic meaning of DcU(c,m) (that is, ∂U(c,m)
∂c

)?

(3) What is the economic meaning of DmU(c,m) (that is, ∂U(c,m)
∂m

)?

DU(c,m) = [DcU(c,m) DmU(c,m)]. Here, DcU(c,m) = log(m)
c

is the marginal
utility of coffee, that is, the additional utility gained from consuming one more unit
of coffee while holding the quantity of coffee mate constant. DmU(c,m) = log(c)

m

4
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represents the marginal utility of coffee mate, or the additional utility gained from
consuming one more unit of coffee mate while holding the quantity of coffee constant.

You may think the proper ”value” of one more unit of coffee should not be evaluated
holding the quantity of coffee mate constant. After all, I should have increased coffee
mate consumption by 0.05 unit too (because m = 0.05c). In fact, this idea is captured
by the total differential. We will discuss it later.

Exercise 4

Find the total differentiation DF (y1, y2, y3) of

F (y1, y2, y3) =

[
F 1(y1, y2, y3)

F 2(y1, y2, y3)

]
=

[
y1y2y3
yα1 y

1−α
2

y3

]
.

Using the definition above, we can find

DF (y1, y2, y3) =

[
D1F

1(y1, y2, y3) D2F
1(y1, y2, y3) D3F

1(y1, y2, y3)

D1F
2(y1, y2, y3) D2F

2(y1, y2, y3) D3F
2(y1, y2, y3)

]

=


y2y3 y1y3 y1y2

α
(

y2
y1

)1−α (
1
y3

)
(1− α)

(
y1
y2

)α (
1
y3

)
−yα1 y

1−α
2

y23



Sometimes we denote

∇f(x) =


D1f(x)

...

Dnf(x)

 =


∂f
∂x1

(x)
...

∂f
∂xn

(x)


as the gradient of f at x. Note that Df(x) and ∇f(x) are effectively the same thing:
They are just transposes of each others.

If f is real-valued (the codomain is R1 but not Rm), then ∇f(x) is the gradient
vector of f at x.

5



UCSB Econ Ph.D. Math Camp - Multivariate Derivatives Summer 2025

Gradient has an intuitive interpretation: it represents when we move along each
direction, how much the function value will change. Take a Cobb-Douglas utility
function u(x, y) = x

1
3y

2
3 as an example. Then we can find

∇u(x, y) =

[
Dxu(x, y)

Dyu(x, y)

]
=

 1
3

(
y
x

) 2
3

2
3

(
x
y

) 1
3


Hence Dxu(1, 1) = 1

3
and Dyu(1, 1) = 2

3
. That is, when we move from (1, 1) one

marginal unit toward x, it increases the utility by 1
3
units; when we move from (1, 1)

one marginal unit toward y, it increases the utility by 2
3
units. And when we move

one unit along both directions, the total utility level adjusted is determined by the
composition from both directions.

x

y

u(x, y) = 1

u(x, y) = 2Dxu(1, 1)

Dyu(1, 1)
∇u(1, 1)

From the graph above of the level curve of the utility function u, you may also
observe another property of the gradient: the gradient of a function is orthogonal to
the level curve. We will apply this fact when we talk about Lagrangian in constrained
optimization.

Total Differential

The most important application of total differentiation is to determine the total
differential.2

2The terms total differentiation, partial differentiation, and total differential can be very confus-
ing. Make sure you know the definition of these three when you are reviewing them.
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We learned earlier that

Df(x) =
[
D1f(x) · · · Dnf(x)

]
=


D1f

1(x) · · · Dnf
1(x)

...
. . .

...

D1f
m(x) · · · Dnf

m(x)


where x = (x1, x2, ..., xn).

In the univariate case, if we want to find how f(x) responses to small changes in the

input variable x, we can calculate df(x)
dx

.

In the multivariate case, we may also want to find how f(x) responses to small changes
in the input vector x. To do this, let’s observe what would happen if we multiply
Df(x) by dx. Note that dx = (dx1, dx2, ..., dxn).

If we exploit the notation:

df(x) ≡ Df(x)dx = D1f(x)dx1 +D2f(x)dx2 + · · ·+Dnf(x)dxn,

then we can write the change of f into the changes in each variable.

Moreover, when we want to find the comparative static with respect to x1 only (but
not the vector x), we can calculate

df(x)

dx1

= D1f(x) +D2f(x)
dx2

dx1

· · ·+Dnf(x)
dxn

dx1

.

In other words, when we are evaluating the effects on a small change in x1 on f(x),
we need to consider not only the direct effect (D1f(x)) but also the indirect effect of
x1 on other variables.

Exercise 5

Let U : R2 → R be a utility function of two goods: coffee c and coffee mate m.

Let U(c,m) = log(c)× log(m), where the consumption of coffee mate is propor-
tional to the consumption of coffee, specifically m = 0.05c (i.e., 1 ounce of coffee
mate is consumed with every 20 ounces of coffee).

7
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(1) Write out again the DcU(c,m) (that is, ∂U(c,m)
∂c

).

(2) Write out the formula of dU(c,m)
dc

. What is the economic meaning of dU(c,m)
dc

?
What is the economic meaning of each term?

(2) Find dU(c,m)
dc

. Compare it with DcU(c,m). Is one of them always greater than
another (assume c,m > 1)? If so, why?

To find the total derivative dU(c,m)
dc

, we must account for the fact that m depends on
c through the relationship m = 0.05c:

dU(c,m)

dc
=

∂U

∂c
· dc
dc

+
∂U

∂m
· dm
dc

We already found in the previous question that:

∂U

∂c
=

log(m)

c
, and

∂U

∂m
=

log(c)

m

Also, since m = 0.05c:
dm

dc
= 0.05

Thus, the total derivative is:

dU(c,m)

dc
=

log(m)

c
· 1 + log(c)

m
· 0.05

� The term dU(c,m)
dc

captures the overall rate of change in utility with respect to
coffee, accounting for both the direct effect of consuming more coffee and the
indirect effect through changes in the consumption of coffee mate.

� The term log(m)
c

captures the direct impact of increasing c.

� The term log(c)
m

·0.05 captures the indirect effect due to the proportional increase
in m with c.

The total derivative is greater (when c,m > 1) because it includes the indirect effect
of consuming more coffee mate when having more coffee.

8
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Multivariate Convex Function

Recall that we defined the convex function:

Definition 3 (Convex function)

Let f : X → R. We say f is a convex function if for any x0, x1 ∈ X, λ ∈ [0, 1],

f(λx0 + (1− λ)x1) ≤ λf(x0) + (1− λ)f(x1).

And we have studied that when X = R, there is a way to use derivative to verify if
a function in convex (if derivative exists).

Theorem 2

For a function f : R → R that is differentiable on an interval I, the the function
f is convex if its first derivative is increasing on I. That is,

f ′(x1) ≤ f ′(x2) whenever x1 < x2 ∈ I

For a function f : R → R that is twice differentiable on an interval I, the the
function f is convex if its second derivative is positive on I. That is,

f ′′(x) > 0 ∀x ∈ I

How about X = Rn? Is there a corresponding way to verify that a function in convex?
The answer is yes. Analogous to the condition f ′′(x) > 0 in the univariate case, the
verification of convexity depends on second order derivatives.

Definition 4

9
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Let f is twice-differentiable. Then the Hessian matrix is defined as

Hf = J(∇f) =


D11f · · · D1nf
...

. . .
...

Dn1f · · · Dnnf

 =


∂2f

(∂x1)2
· · · ∂2f

∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
· · · ∂2f

(∂xn)2

 .

Exercise 6

Let U(c,m) = log(c)× log(m), where the consumption of coffee mate is propor-
tional to the consumption of coffee, specifically m = 0.05c (i.e., 1 ounce of coffee
mate is consumed with every 20 ounces of coffee).

Find the Hessian matrix for U(c,m).

When taking partial derivatives, the order does not matter.

Theorem 3: Young’s theorem

Let f : Rn → Rm be twice-differentiable. Then

∂2f

∂xi∂xj

=
∂2f

∂xj∂xi

for any i, j = 1, . . . , n.

Theorem 4

Suppose f : Rn → R is differentiable in an open set X ⊂ Rn.

f is convex (concave) in X if and only if the Hessian matrix of f is positive
(negative) semi-definite at every point x ∈ X.

Similarly, f is strictly convex (concave) in X if and only if the Hessian matrix
of f is positive (negative) definite at every point x ∈ X.

10
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Note:
1. A matrix is positive definite if all the leading principal minors are positive.
2. A matrix is positive semi-definite if all the leading principal minors are non-
negative.
3. A matrix is negative definite if all the leading principal minors of the matrix al-
ternate in sign, starting with a negative sign.
4. A matrix is negative semi-definite if all the odd-order principal minors are non-
positive, and all the even-order principal minors are non-negative.

We have a similar second-order test for quasi-convex/concave functions. We first
define the bordered Hessian matrix of a twice differentiable function f ,

Hf =


0 D1f · · · Dnf

D1f D11f · · · D1nf
...

...
. . .

...

Dnf Dn1f · · · Dnnf

 .

It is exact the Hessian matrix of f with a “border” of first derivatives.

Theorem 5

Suppose f : Rn → R is differentiable in an open set X ⊂ Rn.

Let H be the bordered Hessian matrix of f and H i be the i-th order leading
principal minor of H.

Then, ∀x ∈ X,

� f is quasi-convex if det(H i) ≤ 0 for i ≥ 2.

� f is quasi-concave if det(H i) ≤ 0 for all even i and det(H i) ≥ 0 for all even
i for all odd i ≥ 3.

� f is strictly quasi-convex if det(H i) < 0 for i ≥ 2.

� f is strictly quasi-concave if det(H i) < 0 for all even i and det(H i) > 0 for
all even i for all odd i ≥ 3.

11
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Exercise 7

Determine whether the following functions are convex/concave/quasi-convex/quasi-
concave.

1. f(x, y) = x2 + y2

2. g(x, y) = xy

One can solve that

Hf =

[
2 0

0 2

]
and Hg =

[
0 1

1 0

]
,

where Hf is positive semi-definite (in fact it is positive definite) and Hg is indefinite.
Hence, f is convex (and not concave). g is neither convex nor concave.

The bordered Hessians of f and g are

Hf =


0 2x 2y

2x 2 0

2y 0 2

 and Hg =


0 y x

y 0 1

x 1 0

 ,

and the determinants of the leading principal minors are

det(Hf 2) = −4y2 ≤ 0, det(Hf 3) = −8x2 − 8y2 ≤ 0,

det(Hg2) = −x2 ≤ 0, det(Hg3) = 0.

Hence both f and g are quasi-convex.
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