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Topic 5: Measure, Counting, Independence 1

Random experiments, outcomes and Events

A random experiment is a process that, when repeated under controlled conditions, does
not always produce the same outcome. Before performing the experiment, we cannot deter-
mine which of the possible outcomes will occur.

Tossing a coin or rolling a die are classical examples of random experiments. However,
the daily change in a stock market prices index or the hourly wage of a randomly selected
individual are also examples of random experiments.

Although the result of a random experiment is unknown in advance, we can define the set
of all possible outcomes it may produce.

Definition 1 (Sample Space)

The set S of all possible outcomes of a particular experiment is called the sample space
of the experiment.

Sample spaces can be classified as countable or uncountable. A sample space is countable if
its elements can be placed in one-to-one correspondence with a subset of the integers. This
classification is important because it influences how probabilities are assigned.

We often consider collections of possible outcomes of a random experiment.

Definition 2 (Event)

An event A is any collection of possible outcomes of an experiment, that is, any subset
of the sample space S.

An event A is said to occur if the outcome of the experiment is in the set A.

1Instructors: Camilo Abbate and Sofia Olguin. This note was prepared for the 2025 UCSB Math Camp
for Ph.D. students in economics. It incorporates materials from previous instructors, including Seonmin Will
Heo, Eunseo Kang, and James Banovetz.
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Definition 3

Let S be the sample space, and let A, B, and A1, A2, ... be events defined on S. Then:

• A is a subset of B, written A ⊂ B, if every element of A is also an element of B.

• The event with no outcomes, ∅ = {}, is called empty set.

• The union of A and B, denoted A ∪B, is the collection of all outcomes that are
in either A or B (or both).

• The intersection of A and B, denoted A ∩B, is the collection of outcomes that
are in both A and B.

• The complement of A, denoted Ac, is the set of all outcomes in S that are not
in A.

• The events A and B are disjoint if they have no outcomes in common: A∩B = ∅.
• The events A1, A2, ... are pairwise disjoint if Ai ∩ Aj = ∅ for all i ̸= j.

• The events A1, A2, ..., An are a partition of S if they are pairwise disjoint and
their union is S (∪∞

i=1Ai = S).

The following theorem summarizes some properties of set operations.

Theorem 1

For any events A, B, C, and {Ei}∞i=1 defined on the sample space S:

• Commutativity A ∪B = B ∪ A

A ∩B = B ∩ A

• Associativity: A ∪ (B ∪ C) = (A ∪B) ∪ C

A ∩ (B ∩ C) = (A ∩B) ∩ C

• Distributive Laws:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) and A ∩
( ∞⋃

i=1

Ei

)
=

∞⋃
i=1

(
A ∩ Ei

)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) and A ∪
( ∞⋂

i=1

Ei

)
=

∞⋂
i=1

(
A ∪ Ei

)
• De Morgan’s Laws: (A ∪B)c = Ac ∩Bc and

(⋃∞
i=1Ei

)c

=
⋂∞

i=1E
c
i

(A ∩B)c = Ac ∪Bc and
(⋂∞

i=1Ei

)c

=
⋃∞

i=1E
c
i
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Now we turn to a concept that is relevant for defining probability: the sigma algebra.

Definition 4 (Sigma algebra)

Given a sample space S, a collection of subsets of S is called a σ-algebra (sigma
algebra), denoted by B, if it satisfies the following three properties:

1. ∅ ∈ B (the empty set is an element of B)
2. If A ∈ B, then AC ∈ B (B is closed under complementation), and

3. If A1, A2, ... ∈ B, then ∪∞
i=1Ai ∈ B (B is closed under countable unions).

These properties also imply the following useful facts:

• S ∈ B (since ∅ ∈ B and S = ∅C)
• B is closed under countable intersections: ∩∞

i=1Ai ∈ B (by De Morgan’s Law and
properties 2 and 3).

Why do we need σ-algebras to define probability? The reason is that in cases involving
uncountably infinite sample spaces, it becomes necessary to restrict the set of allowable
events. We want to ensure that we work only with the measurable sets, those for which areas
are well-defined. While this is a technicality that rarely affects econometrics in practice2,
it is important to be familiar with the terminology, as it is frequently used in probability
theory.

Example 1

Consider the sample space S = {1, 2, 3}.

One σ-algebra is the trivial σ-algebra, given by B = {∅, S}.

The sigma algebra we will typically work with is the power set of S: B = {all subsets of S}.

Since S has n = 3 elements, the power set contains 23 = 8 subsets, the collection of
which forms the sigma algebra:

B = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

2These technicalities do not arise when S is finite or countable.
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Notions of Probability

Probability is a concept that lies at the heart of both economic theory and econometrics. It
defines the mathematical language we use to model uncertainty, variability, and randomness.
Before introducing formal definitions of probability, we begin with the concept of a measure.

Definition 5 (Measure)

Let S be a sample space with associated σ-algebra B. Ameasure µ on S with σ-algebra
B is a function µ : B → [0,∞) such that:

1. The measure of the empty set is zero: µ(∅) = 0, and

2. µ is countably additive: µ
(⋃∞

i=1Ei

)
=

∑∞
i=1 µ(Ei) for any E1, E2, · · · ∈ B where

Ei ∩ Ej = ∅ ∀i ̸= j.

Definition 6 (Probability Function)

Given a sample space S and an associated sigma algebra B, a probability function is
a measure P with domain B that satisfies the following Axioms of Probability:

1. P(A) ≥ 0 for all A ∈ B,
2. P(S) = 1, and

3. If A1, A2, ... are pairwise disjoint, then P (∪∞
i=1Ai) =

∑∞
i=1 P(Ai).

This is known as the axiomatic definition of probability. Under this definition, any function
P that satisfies these axioms is considered a probability function. Note that probability is a
function from the space of events to the non-negative real numbers.

From these axioms, we can derive several properties of the probability function.

Theorem 2: Properties of Probability

Let P be a probability function and let A,B be sets in B, then:

• P(∅) = 0

• P(A) ≤ 1

• P(Ac) = 1− P (A)

• P(B ∩ Ac) = P(B)− P(A ∩B)

• P(A ∪B) = P(A) + P(B)− P(A ∩B) (inclusion-exclusion principle)

• If A ⊆ B, then P(A) ≤ P(B)
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We now present two important inequalities derived from these properties, which are fre-
quently used to bound probabilities.

Theorem 3

Let P be a probability function and let A,B,E1, ... be sets in B, then:

• Bonferroni’s inequality: P(A ∩B) ≥ P (A) + P (B)− 1

• Boole’s inequality: P(A ∪B) ≤ P(A) + P(B)

P (∪∞
i=1Ei) ≤

∑∞
i=1 P(Ei)

Example 2

Consider an experiment consisting of tossing a fair coin. Then the sample space is
S = {H,T}, where H denotes heads and T denotes tails.

By “fair”, we mean that we would expect the event of a heads is to be as likely as the
event of a tails. Thus, a reasonable probability function would satisfy:

P({H}) = P({T})

Using the axioms of probability:

1. P(S) = P({H} ∪ {T}) = 1

2. P({H}) + P({T}) = 1 (since T and H are disjoint and thus P({H} ∪ {T}) =
P({H}) + P({T})).

3. P
(
{H}

)
= P

(
{T}

)
=

1

2
≥ 0

In cases like the one above, where all outcomes in S are equally likely, probabilities of events
can be calculated by simply counting the number of outcomes in the event.

Suppose S = {s1, ..., sN} is a finite sample space. Saying that all outcomes are equally likely
means that P({si}) = 1

N
for every outcome si. Then, for any event A, the probability of A

is:

P(A) =
∑
si∈A

P({si}) =
∑
si∈A

1

N
=

|A|
|S|

where |A| denotes the number of elements in the set A.
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Counting

In many probability calculations, it is useful to count the number of individual outcomes.
Counting methods are specially useful when constructing probability assignments on finite
sample spaces.

We begin with the counting rule, which shows how to compute the number of outcomes when
an experiment consists of multiple stages.

Theorem 4: Counting Rule

If an experiment consists of k separate stages, where the ith stage has ni possible out-
comes for i = 1, ..., k, then the total number of possible outcomes is: n1×n2×· · ·×nk.

This rule is also known as the Fundamental Theorem of Counting.

Example 3

Suppose license plates are formed using three letters (A-Z) followed by four numerical
digits (0-9). If repeated letters and digits are allowed, how many distinct license plates
are possible?

26× 26× 26× 10× 10× 10× 10 ≈ 175 million

We now introduce a useful notation:

Definition 7

The factorial of a natural number n ∈ N is the product of all positive integers less than
or equal to n:

n! = n× (n− 1)× (n− 2)× · · · × 2× 1 =
n∏

i=1

i

Let us now consider the problem of sampling from a finite set. The number possible outcomes
depends on two factors:

1. Can elements be repeated?

2. Does the order matter?

6



UCSB Econ Ph.D. Math Camp - Linear Algebra and Stats Summer 2025

There are four canonical cases, summarized in the table below:

Table 1: Number of possible arrangements of size r from n objects

Without Replacement With Replacement

Ordered P n
r = n!

(n−r)!
nr

Unordered Cn
r =

(
n
r

)
= n!

(n−r)!r!

(
n+r−1

r

)
= (n+r−1)!

(n−1)!r!

Let us explore each case with examples:

1. Ordered, Without Replacement (Permutations)

P n
r =

n!

(n− r)!

Example: Padlock “combinations”. A padlock has 40 digits and requires three distinct
digits in the correct order to unlock. How many possible padlock “combinations” are
there?

40× 39× 38 =
40!

37!
= 59, 280

2. Ordered, With Replacement This corresponds to the fundamental theorem of
counting, where each stage has the same number of options.

nr

Example: Some states issue truck license plates with only six numerical digits (0-9),
allowing for repetition. How many variations of these license plates are possible?

106 = 1, 000, 000

3. Unordered, Without Replacement (Combinations)

Cn
r =

(
n

r

)
=

n!

(n− r)!r!

Example: Suppose you have 5 positions in your PhD program, but 30 equally qualified
applicants. How many different incoming classes could you select?(

30

5

)
=

30!

(25!)(5!)
= 142, 506
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4. Unordered, With Replacement(
n+ r − 1

r

)
=

(n+ r − 1)!

(n− 1)!r!

Example: Assume we have five potential job sites, and three identical trucks, where
multiple trucks can go to the same site. Let us visualize this as placing trucks into
bins:

• Bins: Consider the 5 sites as “bins,” numbered 1–5 (n = 5).

1 2 3 4 5

• Trucks: Identical units assigned to bins (r = 3).

1 2

TT

3 4

T

5

This corresponds to two trucks at site 2 and one at site 4 (alternatively, this might
be seen as the result of drawing two 2s and one 4).

• Consider each bin “wall” and each truck as an element to be ordered. Note that
the first and last walls are “immobile”, so we will not consider them:

1 2

TT

3 4

T

5

We may represent this as a sequence of trucks (T ) and dividers or walls (W )
between bins. Thus, this corresponds to the ordering WTTWWTW .

• We have seven total positions: 3 trucks + 4 dividers. If they were distinct ele-
ments, we would have 7! possibilities. Trucks and dividers are indistinguishable
among themselves. Thus the number of distinct assignments is:

7!

4!3!
=

(
7

3

)
which corresponds to our formula for unordered, with replacement, when we have
five objects, picking three.

Since we are already discussing methods of counting and sampling, it is worth briefly intro-
ducing two methods often used in econometrics:

1. Monte Carlo simulations: Monte Carlo methods refer to algorithms that involve
repeated random sampling to estimate numerical results. Example: Suppose we want
to approximate the distribution of the sum of two fair dice. Each die has six faces, each

8
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with equal chance of occurrence (probability of 1/6). Thus we simulate the following
process:

• Randomly generate two integers between 1 and 6

• Repeat this process 10,000 times

• Plot the histogram of the resulting sums
As the number of simulations increases, the empirical distribution will be closer to the
theoretical one.

2. Bootstrapping: Bootstrapping is a random sampling method used to estimate a
metric or run a test by sampling with replacement from the observed data. It is very
often used to compute standard errors of a regression coefficient. Example: Suppose
we have a dataset with 5,000 observations. This is the process to estimate a standard
error:

• Sample the same number of observations (N = 5000) from our sample with re-
placement

• Run the regression on this bootstrapped sample and record the standard errors

• Repeat this process several times, for example 10,000 times

• Compute the mean of the 10,000 standard errors to obtain the bootstrapped
standard error.

Conditional Probabilities and Independence

In many applications, we are interested in the relationship between two events. For example,
suppose we want to understand the relationship between wages and education. We collect
data on a randomly selected group of people, classifying them based on college education
status (college, C, or no college education, N), and wage level (high, H, or low, L, wage).
This information is presented in the table below:

C N Total

H 10 6 16

L 8 26 34

Total 18 32 50

Using this information, we may want to answer questions like: 1) what is the probability
that a person has college education and a low wage? or 2) if a person has college education,
what is the probability that they have low wage? These questions are not equivalent.

To answer the second question, we introduce the concept of conditional probability.

9
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Definition 8 (Conditional Probability)

If A and B are events in S, and P(B) > 0, then the conditional probability of A
given B, denoted P(A|B), is defined as

P(A|B) =
P(A ∩B)

P(B)

Given B ∈ B such that P(B) ̸= 0, P(·|B) : B → [0,∞) is a probability measure on S
with σ-algebra B.

Using this definition we can now calculate the probability in question 2). The probability
that a person has both college education and a low wage is P(C ∩ L) = 8/50 = 0.16.
The unconditional probability of having college education is given by P(C) = 18/50 =
0.36. Therefore, the conditional probability of having a low wage given college education is
P(L|C) = P(C ∩ L)/P(C) = 0.16/0.36 = 0.44.

Example 4

Suppose we toss a fair six-sided die. The sample space is S = {1, 2, 3, 4, 5, 6}.
What is the probability that we observe a 1, given that we observe an odd number?
Let us define the events A: “observe a 1” and B: “observe a an odd number”.

P(B) = P({1, 3, 5}) = 3

6
=

1

2

P(A ∩B) = P({1}) = 1

6

P(A|B) =
P(A ∩B)

P(B)
=

1/6

1/2
=

1

3
(by def. of cond. prob.)

Thus, given that the die shows an odd number, the probability that it is a 1 is 1/3 .

Definition 9 (Statistical Independendence)

Two events A and B in S are said to be independent if and only if we have one of
three equivalent conditions:

• P(A|B) = P(A)
• P(B|A) = P(B)

• P(A ∩B) = P(A)P(B)

10
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An important relationship can be derived from the partitioning theorem.

Theorem 5: Law of Total Probability

Let A1, A2, ... be a partition of the sample space S, and that P(Ai) > 0 for each i. If B
is an event, then

P(B) =
∞∑
i=1

P(Ai)P(B|Ai)

We now present a famous result credited to Reverend Thomas Bayes, which applies the
definition of conditional probability.

Theorem 6: Bayes’ Rule

Let A1, A2, ... be a partition of the sample space S, and let B be an event in a sample
space S. Then:

P(Ai|B) =
P(B|Ai)P(Ai)

P(B)

P(Ai|B) =
P(B|Ai)P(Ai)∑∞
j=1 P(B|Aj)P(Aj)

for i = 1, 2, ...

References

Casella, G. and Berger, R. (2002). Statistical inference. Chapman and Hall/CRC, 2nd edition.

Hansen, B. (2022). Probability and statistics for economists. Princeton University Press.
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Topic 6: Random Variables and Distribution Functions1

Random Variables

In many cases, it is convenient to represent the outcomes of a random experiment numerically.
To do so, we define a variable that assigns real numbers to outcomes in the sample space.

Definition 1 (Random Variable)

A random variable is a function X : S → R that maps a sample space S into the real
numbers.

Random variables are typically denoted by uppercase letters, while their realizations (specific
values they take) are denoted by the corresponding lowercase letters. For example, the
random variable X can take the value x.

Example 1

Consider the experiment of rolling a fair six-sided die. The sample space is the set
S = {1, 2, 3, 4, 5, 6}. Let us define the random variable X as:

X =

{
1 if we observe an even value

0 if we observe an odd value

This illustrates the mapping from the sample space to the real numbers, where outcomes
{1, 3, 5} are mapped to 0, and outcomes {2, 4, 6} mapped to 1.

We can also define a probability function over a random variable. Let S = {s1, s2, . . . , sn}
be a sample space with an associated probability function P. Let X be a random variable
with range X = {x1, . . . , xm}. We define the probability function PX on X as follows:

PX(X = xi) = P
(
{sj ∈ S|X(sj) = xi}

)
Note that we observe X = xi if and only if the outcome of the random experiment is an
sj ∈ S such that X(sj) = xi. Thus, the probability that X takes the value xi is equal to the
probability of all outcomes in S that map to xi under X.
From our example above, PX(1) = P({2, 4, 6}) = 1/2.

1Instructors: Camilo Abbate and Sofia Olguin. This note was prepared for the 2025 UCSB Math Camp
for Ph.D. students in economics. It incorporates materials from previous instructors, including Seonmin Will
Heo, Eunseo Kang, and James Banovetz.
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Distribution Functions

Every random variable X is associated with a function called the cumulative distribution
function of X.

Definition 2 (Cumulative Distribution Function)

The cumulative distribution function or CDF of a random variable X, denoted
FX(x), is defined as

FX(x) = PX(X ≤ x), for all x ∈ R

Example 2

Consider the experiment of tossing a fair coin twice, and let X = the number of heads
observed. The possible values of X are 0, 1, and 2. Then, the CDF of X is

FX(x) =



0 if −∞ < x < 0

1/4 if 0 ≤ x < 1

3/4 if 1 ≤ x < 2

1 if 2 ≤ x < ∞

1 2 3

0.25

0.5

0.75

1

x

FX(x)

Theorem 1

The function F (x) is a CDF if and only if it satisfies three conditions:

1. lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1

2. F (x) is a non-decreasing function of x

3. F (x) is right-continuous: for every number x0, lim
x↓x0

F (x) = F (x0))

2
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We can classify the random variables in continuous and discrete.

Definition 3

A random variable X is continuous if FX(x) is a continuous function of x.
A random variable is discrete if FX(x) is a step function of x.

Example 3

Consider the following examples of CDFs: • A continuous random variable with expo-
nential distribution:

FX(x) =

{
0 if x < 0

1− e−x if x ≥ 0

• A discrete random variable with a Bernoulli distribution (takes values 0 or 1, where
1 occurs with probability p):

FX(x) =


0 if x < 0

1− p if 0 ≤ x < 1

1 if 1 ≤ x < ∞

Quantiles

For a continuous distribution F (x) the quantiles q(α) are defined as the solutions to the
function

α = F (q(α)).

In other words, the quantile function q(α) is the inverse of the CDF F (x) thus

q(α) = F−1(α)

The quantile function q(α) maps values from the interval [0, 1] to the range of the random
variable X.

When expressed as percentages, 100× q(α) are called the percentiles of the distribution.

Some quantiles have special names. The quartiles are the 0.25, 0.50, and 0.75 quantiles.
They are called quantiles as they divide the population into four equal groups.

3
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Density and Mass Functions

Associated with a random variable X and its CDF FX is another function that describes
the probability of specific outcomes. This function is called the probability density function
(PDF) for continuous random variables, and the probability mass function (PMF) for discrete
random variable.

Definition 4 (Probability Mass Function)

The probability mass function (or PMF) of a discrete random variable X is given
by fX(x) = PX(X = x) for all x.

Example 4

Suppose you are betting on the outcomes of multiple coin tosses. Assuming it is a fair
coin, the probability of guessing correctly on any toss is 1/2. Note that each toss (and
thus each guess) is independent of tosses before and after. If there are 16 tosses, what
is the probability you will guess x tosses right?

Let X be a random variable that counts the number of right guesses. The probability
of guessing x tosses correctly and 16− x incorrectly in a specific order is:(

1

2

)x(
1− 1

2

)16−x

However, we are interested in the the probability of guessing x tosses in any order. Out
of 16 tosses, there are

(
16
x

)
ways of guessing x tosses correctly. Thus, the PMF of X is:

PX(X = x) =

(
16

x

)(
1

2

)x(
1− 1

2

)16−x

This is an example of a binomial distribution with n = 16 and p = 1/2.

Definition 5 (Probability Density Function)

The probability density function (or PDF) of a continuous random variable X is a
function fX(x) such that: ∫ x

−∞
fX(t)dt = FX(x) ∀ x

If fX(x) is continuous, then
d
dx
FX(x) = fX(x) by the Fundamental Theorem of Calcu-

lus.

4
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Example 5

The PDF for a uniform [0, 1] variables is:

fX(x) =


0 if x < 0

1 if 0 ≤ x ≤ 1

0 if x > 1

or fX(x) = 1{0 ≤ x ≤ 1}

Theorem 2

A function fX(x) is a PDF or PMF of a random variable X if and only if

1. fX(x) ≥ 0 for all x

2.
∑

x fX(x) = 1 (discrete case) or
∫∞
−∞ fX(x)dx = 1 (continuous case)

The support of fX(x) is the subset of its domain where the function is strictly positive.
fX(x) takes a value of zero elsewhere.
In the uniform example above, the support is [0, 1]. For the standard normal distribution, the
support is (−∞,∞). Always specify the support when writing down a PDF, as it becomes
extremely important when calculating moments, transforming variables, etc.

Definition 6 (Identically Distributed Random Variables)

The random variables X and Y are identically distributed if, for every set A ∈ B,
PX(X ∈ A) = PY (Y ∈ A).

Theorem 3

The random variables X and Y are identically distributed ⇐⇒ FX(x) = FY (x) ∀ x

Example 6

Consider the example of tossing a fair coin two times. Let us define the random variables:

X = number of heads observed , and

Y = number of tails observed

From Example 2, we know the distribution of X. We can verify that the distribution of
Y is exactly the same: P(X = k) = P(Y = k) for every k = 0, 1, 2. Thus, X and Y are
identically distributed. However, it is evident that X and Y are not equal.

5
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Mathematical Tools

The following two theorems are used to derive some of the results presented in these notes.

Theorem 4: Fundamental Theorem of Calculus

Let f : [a, b] → R be integrable on [a, b] and let F : [a, b] → R satisfy the conditions:

1. F is continuous on [a, b], and

2. F is differentiable on (a, b) and F ′(x) = f(x) ∀x ∈ (a, b).

Then

∫ b

a

f(x)dx = F (b)− F (a).

Theorem 5: Leibniz Rule

For real-valued functions a(x), b(x), and f(x, t)

d

dx

(∫ b(x)

a(x)

f(x, t)dt

)
= f(x, b(x)) · d

dx
b(x)− f(x, a(x)) · d

dx
a(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t)dt

When a and b are constants it simplifies to:

d

dx

(∫ b

a

f(x, t)dt

)
=

∫ b

a

∂

∂x
f(x, t)dt

References

Casella, G. and Berger, R. (2002). Statistical inference. Chapman and Hall/CRC, 2nd edition.

Hansen, B. (2022). Probability and statistics for economists. Princeton University Press.
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Topic 7: Transformation and Moments1

Transformations

We are often interested not only in the behavior and distribution of a random variable X,
but also in the behavior of functions of X. If X is a random variable, we may want to
determine the distribution of Y = g(X). This leads us to the concept of transformations.

Definition 1 (Transformation of a Random Variable)

Let X be a random variable with CDF FX(x). Then the function Y = g(X) is also a
random variable, known as the transformation of X. For any set A, the probability
distribution of Y = g(X) is defined by

PY (Y ∈ A) = PY

(
g(X) ∈ A

)
= PX

(
X ∈ g−1(A)

)
Example 1

Let X be a discrete random variable following a binomial distribution:

fX(x) =

(
n

x

)
px(1− p)n−x, x = 0, 1, · · · , n

where n is a positive integer and p ∈ [0, 1]. Consider the random variable Y = g(X) =
n−X. Then X = n− Y . Using the definition above, we can find the PMF of Y :

fY (y) = PY (Y = y) = PY (n−X = y) (Y is discrete and by def. of Y )

= PX(X = n− y) (rearranging)

= fX(n− y) (by def. of the PMF)

=

(
n

n− y

)
pn−y(1− p)n−(n−y) (plugging in values)

fY (y) =

(
n

y

)
(1− p)ypn−y, y = 0, 1, · · · , n (simplifying)

Thus, the random variable Y , transformation of X, also follows a binomial distribution.

1Instructors: Camilo Abbate and Sofia Olguin. This note was prepared for the 2025 UCSB Math Camp
for Ph.D. students in economics. It incorporates materials from previous instructors, including Seonmin Will
Heo, Eunseo Kang, and James Banovetz.
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While transformations of discrete random variables can be straightforward at times, trans-
formations of continuous random variables often require more care. For univariate transfor-
mations, we can follow these steps:

1. Let U = g(Y ) be a function of a random variable Y .

2. Consider the probability P(U ≤ u).

3. Substitute g(Y ) for U and solve Y in terms of u (pay attention to supports).

4. Rewrite the probability in terms of the CDF of Y .

5. Differentiate with respect to u to find fU(u).

Example 2

Consider a random variable Y with CDF FY (y) and support (−∞,∞).
Define U = Y 2. Then:

P (U ≤ u) = P (Y 2 ≤ u) (plugging in for U)

= P (−
√
u ≤ Y ≤

√
u) (isolating Y )

= FY (
√
u)− FY (−

√
u) (by properties of CDFs)

fU(u) =

(
1

2
√
u

)
fY (

√
u) +

(
1

2
√
u

)
fY (−

√
u) (differentiating w.r.t. u)

=

(
1

2
√
u

)[
fY (

√
u) + fY (−

√
u)
]
, u ∈ [0,∞) (simplifying)

Note: this can get more complicated if the support is not symmetric around zero.

2
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Example 3

Let X be a random variable with CDF FX(x) and support (−2, 4). Define W = |X|.
Then:

P (W ≤ w) = P (|X| ≤ w) (plugging in for W )

=

{
P (−w ≤ X ≤ w) if w ∈ [0, 2)

P (X ≤ w) if w ∈ [2, 4)
(isolating X)

=

{
FX(w)− FX(−w) if w ∈ [0, 2)

FX(w) if w ∈ [2, 4)
(by our properties of CDFs)

fW (w) =

{
fX(w) + fX(−w) if w ∈ [0, 2)

fX(w) if w ∈ [2, 4)
(differentiating w.r.t. u)

Theorem 1

Suppose we have a continuous random variable Y , and U = g(Y ) is a strictly increasing
or strictly decreasing function of Y . Then the PDF of U is given by

fU(u) = fY
(
g−1(u)

) ∣∣∣∣dg−1(u)

du

∣∣∣∣

This result follows directly from the method outlined above:

• If g′(Y ) > 0, then P (g(Y ) ≤ u) = P (Y ≤ g−1(u)) = FY

(
g−1(u)

)
and dg−1(u)

du
> 0.

• If g′(Y ) < 0, then P (g(Y ) ≤ u) = P (Y ≥ g−1(u)) = 1− FY

(
g−1(u)

)
and dg−1(u)

du
< 0.
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Example 4

Suppose we have a random variable Y which measures tons of refined sugar sold per
day. The distribution of Y is given by

fY (y) = 2y y ∈ [0, 1]

The company sells refined sugar for $600 per ton. It costs the company $300 per ton
to refine sugar, with fixed costs of $100 per day. Then the daily profit in hundreds of
dollars is U = 3Y − 1. Find the PDF of U .

U = g(Y ) = 3Y − 1 (the transformation)

Y = g−1(U) =
U + 1

3
(solve for Y )

∂g−1(U)

∂U
=

1

3
(differentiate w.r.t. U)

fU(u) = 2

(
u+ 1

3

) ∣∣∣∣13
∣∣∣∣ (Theorem 1)

=
2

9
(u+ 1) u ∈ [−1, 2]

In the econometrics sequence, we will learn several other distributions such as the chi-squared
(χ2) distribution, t-distribution, and F -distribution. Make sure you keep track of the as-
sumptions and support for each distribution.
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Expected Values

The expected value, or expectation, of a random variable X, denoted as E[X], is a measure
of central tendency of the distribution. It is the average value with probability-weighting
averaging.

Definition 2

The expected value of a random variable g(X), denoted by E
[
g(X)

]
, is given by:

E
[
g(X)

]
=

{∫∞
−∞ g(x)fX(x)dx if X is continuous∑
x g(x)fX(x) if X is discrete

provided that E
[
|g(X)|

]
< ∞.

If E
[
|X|

]
< ∞, then E[X] exists:

E[X] =

∫ ∞

−∞
xdFX(x) =

∫ ∞

0

xdFX(x) +

∫ 0

−∞
xdFX(x) =

∫ ∞

0

xdFX(x)︸ ︷︷ ︸
=I1

−
∫ 0

−∞
(−x)dFX(x)︸ ︷︷ ︸

=I2

E
[
|X|

]
=

∫ ∞

0

|x|dFX(x) +

∫ 0

−∞
|x|dFX(x) =

∫ ∞

0

xdFX(x) +

∫ 0

−∞
(−x)dFX(x) = I1 + I2

Theorem 2: Linearity of Expectations

Expectations are linear, i.e., for a random variable X and any constants a, b, and c,

E
[
ag(X) + bh(X) + c

]
= aE

[
g(X)

]
+ bE

[
h(X)

]
+ c.
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Example 5

Find the expected value of X, where X is distributed exponentially (β),
i.e., fX(x) = βe−βx, 0 ≤ x < ∞.

E
[
X
]
=

∫ ∞

0

xβe−βxdx (by def. of E)

=
[
x
(
−e−βx

)]∞
0
+

∫ ∞

0

e−βxdx (by integration by parts)

= 0 +

∫ ∞

0

e−βxdx (e−βx → 0 faster than x grows)

=

[
− 1

β
e−βx

]∞
0

(taking the integral)

E
[
X
]
=

1

β
(evaluating)

Variance

Definition 3

The variance of a random variable X is defined to be the expectation:

Var
[
X
]
= E

[
(X − E[X])2

]
This can equivalently be written as Var

[
X
]
= E

[
X2

]
−
(
E[X]

)2
.

Theorem 3

If X is a random variable with finite variance, then for any constants a and b,

Var[aX + b] = a2Var[X].
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Moments and Moment Generating Functions

Moments are an important concept in mathematics and statistics. They are often casu-
ally mentioned in conversations among economists, specially in phrases like “restrictions for
higher moments”, “matching moments”, etc. It is therefore important to understand what
moments are.

Definition 4

For each integer n, the nth moment of X, mn, is

mn = E
[
Xn

]
.

The nth central moment, µn, is

µn = E
[
(X − µ)n

]
where m1 = µ = E

[
X
]
.

Moments are quantitative measures used to describe the shape of a probability distribution:

• The first moment is the mean, which describes provides information about the central
tendency – where the center of mass is located.

• The second moment is the variance, describes the spread of a function.

• The third moment is the skewness, which describes how skewed or asymmetric a
distribution is.

• The fourth moment is the kurtosis, which reflects how heavy the distribution is on
its tails.

Definition 5

Let X be a random variable with CDF FX(x). The moment generating function or
MGF of X, denoted by MX(t), is given by

MX(t) = E
[
etx

]
if the expectation exists for t in the neighborhood of 0.

7
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Example 6

Let Z be a random variable with the Standard Normal distribution: Z ∼ N(0, 1). Its
probability density function (PDF) is:

ϕ(z) =
1√
2π

e−
1
2
z2 , z ∈ (−∞,∞)

Find the MGF for Z:

MZ(t) = E
[
etZ

]
=

∫ ∞

−∞
etz

1√
2π

e−
1
2
z2dz (by definition of expected value)

= e
1
2
t2
∫ ∞

−∞

1√
2π

e−
1
2
(z−t)2dz (by algebraa)

= e
1
2
t2 (by property of PDF)

Note: The PDF of a random variable that follows a Normal distribution with mean t
and variance 1 is: 1√

2π
e−

1
2
(z−t)2 thus

∫∞
−∞

1√
2π
e−

1
2
(z−t)2dz = 1.

a We rearranged the exponent in e−
1
2 z

2+tz by completing the square: − 1
2z

2 + tz = − 1
2 (z

2 − 2tz)−
1
2 t

2 + 1
2 t

2 = − 1
2 (z

2 − 2tz + t2) + 1
2 t

2 = − 1
2 (z − t)2 + 1

2 t
2

Example 7

Find the MGF for a random variable X ∼ N(µ, σ2) with PDF fX(x) =
1√
2πσ2

e−
1
2(

x−µ
σ )

2

.

Let x = ϕ(z) = zσ + µ.

E[etX ] =
∫ ∞

−∞
etx

1√
2πσ2

e−
1
2(

x−µ
σ )

2

dx (by definition of expectations)

=

∫ ∞

−∞
eµte(σt)·z

1√
2πσ2

e−
1
2
z2σdz (Integration by Substitution)

= eµt
∫ ∞

−∞
e(σt)·z

1√
2π

e−
1
2
z2︸ ︷︷ ︸

fZ(z)

dz (rearranging)

= eµtE[e(σt)Z ] (by definition of expectations)

= eµt+
1
2
σ2t2 (by MGF of a Standard Normal)

8
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Because of the result in the theorem below, we refer to these as moment generating functions.

Theorem 4

If X has MGF MX(t), then

E
[
Xn

]
= M

(n)
X (0) =

dn

dtn
MX(t)

∣∣∣
t=0

That is, the nth moment is equal to the nth derivative of MX(t) evaluated at t = 0.

Proof. Assuming that we can exchange integrals and derivatives, we can show that this is
true for the expected value:

d

dt
MX(t) =

d

dt

∫ ∞

−∞
etxfX(x)dx =

∫ ∞

−∞

(
d

dt
etx

)
fX(x)dx =

∫ ∞

−∞
xetxfX(x)dx = E

[
XetX

]
Thus,

d

dt
MX(t)

∣∣∣
t=0

= E
[
XetX

]∣∣∣
t=0

= E
[
X
]

Proceeding via induction, we could prove that this holds for any integer n, assuming that
the MGF exists. That is, we could use MGFs to obtain every non-central moment mn. ■

Example 8

Let X ∼ N(µ, σ2) be a random variable. The MGF of X (derived in Example 7) is:

MX(t) = eµt+
1
2
σ2t2

• First moment:

M
(1)
X (t) = eµt+

1
2
σ2t2 · (µ+ σ2t) (differentiating w.r.t. t)

M
(1)
X (0) = µ

• Second moment:

M
(2)
X (t) = eµt+

1
2
σ2t2 · (µ+ σ2t)2 + eµt+

1
2
σ2t2 · σ2 (differentiating w.r.t. t twice)

M
(2)
X (0) = µ2 + σ2

9
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Mathematical Tools: Integration

The following two theorems are used to derive some of the results presented in these notes.

Theorem 5: Integration by Parts

If f, g : [a, b] → R are integrable on [a, b] and have antiderivative F,G on [a, b], then∫ b

a

F (x)g(x)dx =
[
F (b)G(b)− F (a)G(a)

]
−
∫ b

a

f(x)G(x)dx

Proof. Let H(x) := F (x)G(x). Then H ′(x) = f(x)G(x) + F (x)g(x). It follows from Funda-

mental Theorem of Calculus that
∫ b

a
H ′(x)dx = H(b)−H(a). ■

Theorem 6: Integration by Substitution –Definite integrals

Let ϕ : [a, b] → I be a differentiable function with a continuous derivative, where I ⊂ R
is an interval. Suppose that f : I → R is a continuous function. Then, if x = ϕ(z),∫ b

a

f
(
ϕ(z)

)
ϕ′(z)dz =

∫ ϕ(b)

ϕ(a)

f(x)dx.

References

Casella, G. and Berger, R. (2002). Statistical inference. Chapman and Hall/CRC, 2nd edition.

Hansen, B. (2022). Probability and statistics for economists. Princeton University Press.

10



UCSB Econ Ph.D. Math Camp - Linear Algebra and Stats Summer 2025

Topic 8: Multiple Random Variables1

Multiple Random Variables

We have previously discussed the concept of random variables. We now extend this concept
to many random variables, known as random vectors. To make the distinction clear, we will
refer to one-dimensional random variables as univariate, two-dimensional random pairs as
bivariate, and vectors of any dimension as multivariate.

The majority of concepts will be defined for the bivariate situation, with some being gener-
alized to multivariate settings.

Definition 1 (Multivariate Random Vector)

An n-dimensional random vector, or multivariate random vector, is a function
from the sample space S to Rn, written as X = (X1, X2, . . . , Xn)

′.

Definition 2 (Joint Probability Mass Function)

Let (X, Y ) be a discrete bivariate random vector. Then the joint probability mass
function is the function fXY (x, y) : R2 → R defined by

fXY (x, y) = P (X = x, Y = y)

Example 1

Let X and Y be discrete random variables taking values in the set {1, 2, 3}.
The table below represents their joint PMF, where each cell contains the probability
P (X = xi, Y = yj) for i, j = 1, 2, 3:

X

1 2 3

1 0 1/8 1/4

Y 2 1/12 1/4 0

3 1/6 1/8 0

1Instructors: Camilo Abbate and Sofia Olguin. This note was prepared for the 2025 UCSB Math Camp
for Ph.D. students in economics. It incorporates materials from previous instructors, including Seonmin Will
Heo, Eunseo Kang, and James Banovetz.
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Definition 3 (Marginal PMFs)

Given a discrete bivariate PMF fXY (x, y), the marginal PMFs of X and Y , denoted
fX(x) = P (X = x) and fY (y) = P (Y = y) respectively, are given by

fX(x) =
∑

y∈Range(Y )

fXY (x, y) and fY (y) =
∑

x∈Range(X)

fXY (x, y).

Example 2

Consider the distribution from the preceding example. To find the marginal PMF of Y ,
we sum across the rows:

X

1 2 3 fY (y)

1 0 1/8 1/4 3/8

Y 2 1/12 1/4 0 1/3

3 1/6 1/8 0 7/24

fY (y) =


3/8 if Y = 1

1/3 if Y = 2

7/24 if Y = 3

Analogously, to find the marginal PMF of X, we would sum over the values in each
column.

Definition 4 (Joint PDF)

If (X, Y ) is a continuous, bivariate, random vector, then fXY (x, y) is the joint proba-
bility density function if for every A ⊆ R2:

P
{
(X, Y ) ∈ A

}
=

∫∫
A

fXY (x, y) dx dy.

Example 3

The bivariate uniform PDF, where x ∈ [0, 1] and y ∈ [0, 1], is given by

fX,Y (x, y) = 1

{
(x, y) ∈ [0, 1]× [0, 1]

}
=

{
1 if x ∈ [0, 1] and y ∈ [0, 1]

0 else

2
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Definition 5 (Marginal PDF)

Given a continuous bivariate PDF fXY (x, y), the marginal PDFs of X and Y are
given by

fX(x) =

∫ ∞

−∞
fXY (x, y)dy and fY (y) =

∫ ∞

−∞
fXY (x, y)dx.

Example 4

Consider the joint PDF

fXY (x, y) = e−y
1
{
0 < x < y < ∞

}
=

{
e−y if 0 < x < y < ∞
0 else

Then the marginal PDF of X can be found:

fX(x) =

∫ ∞

x

e−ydy (integrating out Y )

= −e−y
∣∣∞
x

(taking the integral)

= 0−
(
−e−x

)
(evaluating)

fX(x) = e−x · 1
{
x ∈ (0,∞)

}
=

{
e−x if x ∈ (0,∞)

0 otherwise

Definition 6 (Conditional Distribution)

Let (X, Y ) be a continuous (discrete) bivariate random vector with joint PDF (PMF)
fXY (x, y) and marginal PDFs (PMFs) fX(x) and fY (y). Then for any x such that
fX(x) > 0, the conditional PDF (PMF) of Y given X = x is given by

fY |X(y|x) =
fXY (x, y)

fX(x)
.

3
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Example 5

Given the joint PDF fXY (x, y) = e−y, where 0 < x < y < ∞, find the conditional
distribution of Y given X = x.

fX(x) = e−x
1
{
x ∈ (0,∞)

}
(from the previous example)

fY |X(y|x) =
fXY (x, y)

fX(x)
(by definition)

=
e−y

e−x
(plug in the PDFs)

fY |X(y|x) = e−(y−x)
1
{
y ≥ x

}
=

{
e−(y−x) if y ≥ x

0 otherwise
(simplify)

Definition 7 (Independence of Random Variables)

Let (X, Y ) be a bivariate random vector with joint PDF (or PMF) fXY (x, y) and
marginal PDFs (or PMfs) fX(x) and fY (y).
Then X and Y are independent random variables if for every x ∈ R and y ∈ R,

fXY (x, y) = fX(x)fY (y)

This is a formal definition of independence. To show that two variables are not independent,
we must use this definition. To prove independence, we can rely on a simpler theorem.

Theorem 1

X and Y are independent random variables if and only if there exist functions g(x) and
h(y) such that for all x ∈ R and y ∈ R,

fXY (x, y) = g(x)h(y)

This weaker condition eliminates the requirement for integrals or sums to determine marginal
distributions, making it easier to check.

4
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Example 6

Consider the joint PDF:

fXY (x, y) =
1

384
x2y4e−y−(x/2)·1

{
x > 0 ∧ y > 0

}
=

{
1

384
x2y4e−y−(x/2) if x > 0 ∧ y > 0

0 otherwise

Rather than integrating to find marginals, we apply the criterion from Theorem 1:

fXY (x, y) =
1

384
x2y4e−y−(x/2) =

(
y4e−y

384

)
1
{
y > 0

}
︸ ︷︷ ︸

h(y)

(
x2e−x/2

)
1
{
x > 0

}︸ ︷︷ ︸
g(x)

Since the joint PDF can be factored into a product of a function of X and a function
of Y , we conclude that X and Y are independent.

Example 7

Consider the joint PDF:

fXY (x, y) =

{
e−y if 0 < x < y < ∞
0 else

= e−y
1
{
0 < x < y < ∞

}
Although the joint PDF appears to be factorable, the support condition 0 < x < y
introduces dependence between X and Y . Thus, we cannot cannot factor it. To rigor-
ously prove that these variables are not independent, we need to appeal to the definition.

The concepts defined for the bivariate case can be extended to the multivariate case. For
example, we can get a marginal distribution for a subset of n jointly distributed random
variables by integrating/summing over the remaining. We could find the marginal PDF of
X1, · · · , Xk by integrating the joint PDF over Xk+1, · · · , Xn. Similarly, we could define a
conditional PDF such as f(y|x1, x2, · · · , xn), which are especially useful in econometrics.
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Definition 8 (Mutual Independence)

Let X1, · · · , Xn be random variables with joint PDF or PMF fX(x1, · · ·xn) and let
fXi

(xi) denote the marginal PDF or PMF of Xi. Then if X1, · · · , Xn are mutually
independent random variables if for every (x1, · · · , xn)

fX(x1, · · · , xn) =
n∏

i=1

fXi
(xi).

Definition 9 (Multivariate Normal Distribution)

A random vector X ∈ Rn is said to be jointly normally distributed with mean
vector µ ∈ Rn and covariance matrix Σ ∈ Rn×n, written X ∼ N (µ,Σ), if its probability
density function is given by

fX(x) =
1

(
√
2π)n

√
det(Σ)

e−
1
2
(x−µ)TΣ−1(x−µ)

Note that X ∼ N(µ,Σ) =⇒ AX+ b ∼ N(Aµ+ b, AΣAT ).

Bivariate Normal PDF: Suppose X and Y are jointly normal with means µX , µY , vari-
ances σ2

X , σ
2
Y , and correlation ρ. Written as:(

X1

X2

)
∼ N

((
µX

µY

)
,

(
σ2
X σXY

σXY σ2
Y

))

Then:

fXY (x, y) =
1

2πσXσY
√

1− ρ2
exp

(
− 1

2(1− ρ2)

([
x− µX

σX

)2

− 2ρ

(
x− µX

σX

)(
y − µY

σY

)
+

(
y − µY

σY

)2
])

Note:

• The marginal distributions of X and Y are normal distributions.

• The conditional distribution of Y given X = x is also a normal distribution.
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Multivariate Moments

Expectations of functions of random vectors are analogous to the univariate case.

Definition 10 (Expectations)

For a real-valued function g(x, y) defined on the support of a bivariate random vector
(X, Y ), the expectation of g(X, Y ) is

E
[
g(X, Y )

]
=

∑
x∈Range(X)

∑
y∈Range(Y )

g(x, y)fXY (x, y) if (X, Y ) is discrete

E
[
g(X, Y )

]
=

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fXY (x, y) dx dy if (X, Y ) is cotinuous

Definition 11 (Conditional Expectation)

Let Y conditional on X = x follow the distribution fY |X(y|x). If g(Y ) is a real-valued
function of Y , then the conditional expectation of g(Y ) given X = x is defined as:

E
[
g(Y )|X = x

]
=

∑
y∈Range(Y )

g(y)fY |X(y|x)dy if Y is discrete

E
[
g(Y )|X = x

]
=

∫ ∞

−∞
g(y)fY |X(y|x) if Y is continuous

Note that E[Y |X = x] is a numerical value, it is the mean of Y given that we observe X = x.
In contrast, conditional expectation E[Y |X] is a random variable, its value depends on the
realization of X.

Assume that the range of X is given by Range(X) = {x1, x2, · · · , xJ}. If E|Y | < ∞, then
the conditional expectation E[Y | X] can be written as:

E[Y | X] =
J∑

j=1

E[Y | X = xj] · 1{X = xj}

where 1{X = xj} is the indicator function that equals 1 when X = xj, and 0 otherwise.
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Theorem 2: Conditional Expectation Function (CEF) Decomposition

Conditional Expectation Function Decomposition
If E|Y | < ∞, then

ε = Y − E(Y |X)

From CEF decomposition, we have
E(ε|X) = 0.

Theorem 3: Law of Iterated Expectations

If E |Y | < ∞, then for any random vector X,

E
[
Y
]
= E

[
E
[
Y |X

]]
.

If E |Y | < ∞, then for any random vector X1,X2,

E
[
Y |X1

]
= E

[
E
[
Y |X1,X2

]
| X1

]
.

Theorem 4: Conditioning Theorem

If E |Y | < ∞, then for any random vector X,

E
[
g(X)Y |X

]
= g(X)E

[
Y |X

]
In addition, if E |g(X)Y | < ∞, then

E
[
g(X)Y

]
= E

[
g(X)E

[
Y |X

]]
.

Definition 12 (Conditional Variance)

Given the conditions above, the conditional variance of Y given X = x

Var
[
Y |X = x

]
= E

[
Y 2|X = x

]
− E

[
Y |X = x

]2
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Definition 13 (Covariance)

The covariance of X and Y is the number defined by

Cov(X, Y ) = E
[
(X − E[X])(Y − E[Y ])

]

Note that we frequently employ a simpler formula, analogous to our alternative formula for
the univariate variance:

Cov(X, Y ) = E
[
XY

]
− E

[
X
]
E
[
Y
]

From CEF decomposition, for any real-valued function h : Range(X) → R,

Cov
(
ε, h(X)

)
= 0

Definition 14 (Correlation)

The correlation of X and Y is the number defined by

ρXY =
Cov(X, Y )

σXσY

.

Note that the correlation is always between −1 and 1 and is the “unitless” version of the
covariance, where ρ = −1 and ρ = 1 represent perfect linear relationships between X and
Y . Note that correlations only measure linear relationships.

Theorem 5

If X and Y are any two random variables and a and b are any two constants, then

Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X, Y ).
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Theorem 6

If X and Y are independent random variables, then the following are satisfied:

1. If g(x) is a function only of x and h(y) is a function only of y, then

E
[
g(X)h(Y )

]
= E

[
g(X)

]
E
[
h(Y )

]
.

2. Cov(X, Y ) = 0.

Note that independence implies these conditions hold, but not the other way around. Pay
particular attention to the fact that Cov(X, Y ) = 0 does not imply independence.

Definition 15 (Conditional Covariance)

The conditional covariance of Y and Z given X = x is the number defined by

Cov(Y, Z|X = x) = E
[(

Y − E(Y |X = x)
)(

Z − E(Z|X = x)
)
| X = x

]

Theorem 7: Covariance Decomposition

Cov(Y, Z) = Cov
(
E [Y | X] ,E [Z | X]

)
+ E

[
Cov(Y, Z|X)

]
where: Cov

(
E [Y | X] ,E [Z | X]

)
= E

(
E [Y | X]E [Z | X]

)
− E(Y )E(Z)

E
[
Cov(Y, Z|X)

]
= E(Y Z)− E

(
E [Y | X]E [Z | X]

)
Cov(Y, Z|X) = E [Y Z | X]− E [Y | X]E [Z | X]

Theorem 8: Variance Decomposition

V ar(Y ) = V ar
(
E[Y |X]

)
+ E

[
V ar(Y |X)

]

The first term on the right-hand side is commonly referred to as across group variance, while
the second term is known as within group variance.
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The following examples connect key concepts discussed in these notes.

1. X, Y normal and Cov(X, Y ) = 0 ↛ X ⊥⊥ Y
(Counter Example) X ∼ N(0, 1), PZ(Z = 1) = PZ(Z = −1) = 1

2
, and X,Z indepen-

dent. Define Y := XZ. Then X and Y are not independent.

Check Y ∼ N(0, 1).

PY (Y ≤ y) = PY (Y ≤ y|Z = 1)PZ(Z = 1) + PY (Y ≤ y|Z = −1)PZ(Z = −1)

= PX(X ≤ y) · 1
2
+ PX(X ≥ −y) · 1

2

= Φ(y)
1

2
+ Φ(+y)

1

2

= Φ(y).

Check Cov(X, Y ) = 0.

Cov(X, Y ) = E[XY ]− E[X]E[Y ] = E[X2Z]− E[X2]E[Z] = 0.

2. E[U |X] = E[U ] ↛ X ⊥⊥ U
(Counter Example) X, ϵ ∼ N(0, 1), X ⊥⊥ ϵ, U = ϵX, U |X ∼ N(0, X2)

3. X, Y joint normal and Cov(X, Y ) = 0 ⇐⇒ X ⊥⊥ Y

4. E(Y |X) = E(Y ) =⇒ Cov(X, Y ) = 0

Proof.

Cov(X,Y ) = E
[(
X − E(X)

)(
Y − E(Y )

)]
= E

[
E
[(
X − E(X)

)(
Y − E(Y )

)
| X

]]

= E

[(
X − E(X)

)
E
[(
Y − E(Y )

)
| X

]]
= E

[(
X − E(X)

)(
E(Y |X)− E(Y )

)]
= 0

■
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