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Topic 8: Integrals1

Fundamental Theorem of Calculus

Due to time constraints, we will skip the formal definition of integrability and focus instead
on applications.

Denote the integral of a function f from a to x as F (x): F (x) =
∫ x

a
(t)dt. From the diagram

below, observe that when x increases by a small amount ∆x, the change in the accumulated
area, given by F (x+∆x)− F (x), is approximately equal to the function value at x.

x

f(x)
f(x)

a x x+∆x

Theorem 1: First Fundamental Theorem of Calculus

Let f be a Riemann integrable function on [a, b]. For a ≤ x ≤ b, put

F (x) =

∫ x

a

f(t) dt.

Then, F is (uniformly) continuous on [a, b].

Furthermore, if f is continuous at a point x0 of [a, b], then F is differentiable at x0, and

F ′(x0) = f(x0).

1Instructors: Camilo Abbate and Sofia Olguin. This note was prepared for the 2025 UCSB Math Camp
for Ph.D. students in economics. It incorporates materials from previous instructors, including Shu-Chen
Tsao, ChienHsun Lin, and Sarah Robinson.
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The First Fundamental Theorem of Calculus suggests that integration and differentiation are
inverse operations. For this reason, the integral of f is sometimes called the antiderivative
of f .

Theorem 2: Second Fundamental Theorem of Calculus

Let f be a Riemann integrable function on [a, b]. Suppose there is a differentiable
function F on [a, b] such that F ′ = f , then∫ b

a

f(x) dx = F (b)− F (a).

Properties of Integrals

The following are some rules for integrals. Assume all functions are Riemann integrable.

Proposition 1

1. Linearity:
∫ b

a
f(x) + g(x)dx =

∫ b

a
f(x)dx+

∫ b

a
g(x)dx.

2. Bounds: Let m be the lower bound of f(x) for all x ∈ [a, b], and let M be the upper

bound of f(x) for all x ∈ [a, b]. Then, m(b− a) ≤
∫ b

a
f(x)dx ≤ M(b− a).

3. Inequalities between functions: If f(x) ≤ g(x) for each x ∈ [a, b], then
∫ b

a
f(x)dx ≤∫ b

a
g(x)dx.

Example 1

Suppose a company expects to receive a continuous income stream at a rate of R(t) =
2000e0.05t dollars per year, where t is the time in years.

Calculate the present value of this income stream over the next 10 years if the discount
rate is 2 percent.
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One useful theorem that we learned in freshmen calculus is the integration by parts.

Theorem 3: Integration by parts

Suppose F and G are differentiable on [a, b], and f and g are Riemann integrable. Then,∫ b

a

F (x)g(x) dx = (F (b)G(b)− F (a)G(a))−
∫ b

a

f(x)G(x) dx

Example 2

Evaluate the following integral ∫ b

a

xex dx.

The first step for integration by parts is to determine the parts.

Let F (x) = x, and G(x) = ex. Then, f(x) = F ′(x) = 1, and g(x) = g′(x) = ex.

Hence, we can replace our integral by∫ b

a

xexdx = beb − aea −
∫ b

a

exdx

= beb − aea −
[
ex
∣∣b
a

= beb − aea −
(
eb − ea

)
= (b− 1)eb − (a− 1)ea.
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Leibniz rule

Theorem 4

Suppose f(x, t) is continuously differentiable with respect to t, and a(t), b(t) are differ-
entiable.a

Then,

d

dt

(∫ b(t)

a(t)

f(x, t) dx

)
=

∫ b(t)

a(t)

∂

∂t
f(x, t) dx+ f(b(t), t) · b′(t)− f(a(t), t) · a′(t)

aContinuously differentiable: the derivative exists and is continuous.

Example 3

Evaluate the following integral

d

dt

∫ t2

0

ext dx.

Useful inequalities for integrals

This section revisits four useful inequalities: Jensen’s, Cauchy-Schwarz, Hölder’s, and Minkowski.
Although we originally defined them in algebraic or metric space settings, each of these in-
equalities extends naturally to integrals.

These inequalities appear frequently in applications during the first year, particularly for
econometrics courses.

Theorem 5: Jensen’s Inequality in Rn

Consider any x1, ...,xn ∈ Rn, and any λ1, ..., λn ∈ [0, 1] such that
∑n

i=1 λi = 1. This
forms a convex combination

∑n
i=1 λixi. Suppose f is convex.

Jensen’s inequality states:

f

(
n∑

i=1

λixi

)
≤

n∑
i=1

λif(xi)
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Proposition 2 (Jensen’s Inequality in Integral Form)

Let g be a convex function and f a measurable function such that both g(f(x)) and
f(x) are integrable.

Jensen’s inequality states:

g

(∫
X

f(x) dµ(x)

)
≤
∫
X

g(f(x)) dµ(x).

where µ(x) is a measure (e.g., probability measure) on the space X.

The statistical version of Jensen’s inequality is

h(E[X]) ≤ E[h(X)]

where h is a convex function, X is a random variable, and E[·] is the expectation.

Theorem 6: Cauchy-Schwarz Inequality in Rn

Consider any x,y ∈ Rn, where x = (x1, ..., xn) and y = (y1, ..., yn). The Cauchy-Schwarz
inequality states: (

n∑
i=1

xiyi

)2

≤

(
n∑

i=1

x2
i

)(
n∑

i=1

y2i

)

Proposition 3 (Cauchy-Schwarz Inequality in Integral Form)

The Cauchy-Schwarz inequality states:(∫
X

f(x)g(x) dµ(x)

)2

≤
(∫

X

|f(x)|2 dµ(x)
)(∫

X

|g(x)|2 dµ(x)
)
.

The statistical version of the Cauchy-Schwarz inequality is

(E[XY ])2 ≤ E[X2]E[Y 2]
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Theorem 7: Hölder’s Inequality in Rn

Consider any x,y ∈ Rn, where x = (x1, ..., xn) and y = (y1, ..., yn). The Hölder’s
inequality states:

n∑
i=1

|xiyi| ≤

(
n∑

i=1

|xi|p
) 1

p
(

n∑
i=1

|yi|q
) 1

q

for all p, q ∈ [1,∞) and 1
p
+ 1

q
= 1.

Proposition 4 (Hölder’s Inequality Inequality in Integral Form)

Hölder’s inequality states:∫
X

|f(x)g(x)| dµ(x) ≤
(∫

X

|f(x)|p dµ(x)
)1/p(∫

X

|g(x)|q dµ(x)
)1/q

.

for all p, q ∈ [1,∞) and 1
p
+ 1

q
= 1.

The statistical version of Hölder’s inequality is

E[|XY |] ≤ E[|X|p]
1
pE[|Y |q]

1
q

Theorem 8: Minkowski inequality Rn

Consider any x,y ∈ Rn, where x = (x1, ..., xn) and y = (y1, ..., yn). The Minkowski
inequality states:(

n∑
i=1

|xi + yi|p
) 1

p

≤

(
n∑

i=1

|xi|p
) 1

p

+

(
n∑

i=1

|yi|p
) 1

p

for all p ∈ [1,∞).

Proposition 5 (Minkowski inequality in Integral Form)

The Minkowski inequality states:(∫
X

|f(x) + g(x)|p dµ(x)
)1/p

≤
(∫

X

|f(x)|p dµ(x)
)1/p

+

(∫
X

|g(x)|p dµ(x)
)1/p

.

The statistical version of the Minkowski inequality is

(E[|X + Y |p])
1
p ≤ E[|X|p]

1
pE[|Y |p]

1
p
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Topic 9: Optimization1

Optimization Problems

Optimization problems are fundamental to economics because they provide a framework for
modeling and analyzing how agents make decisions under constraints.

To further motivate this topic, consider a classic consumer choice problem. Suppose an
individual consumes two goods x1 and x2, with the following utility function and budget
constraint:

u(x1, x2) = xα
1x

1−α
2 p1x1 + p2x2 ≤ m x1, x2 ∈ R+.

How can we formally express the problem of finding the optimal consumption (x1, x2) to
maximize utility?

Definition 1

Let f : X → R, g : X → R, and h : X → R. Also let (α, β, γ, θ) ∈ Θ. Then the
following expression

max
x∈D(θ)

f(x;α) subject to g(x; β) = 0, h(x; γ) ≥ 0.

is a maximization problem of x.

• f is the objective function.

• x is the choice variable(s). D(θ) is the choice set.

• g is the equality constraint. h is the inequality constraint.

• α, β, γ, θ are parameters. Θ is the parameter space.

Then we define the solution of a maximization problem.

1Instructors: Camilo Abbate and Sofia Olguin. This note was prepared for the 2025 UCSB Math Camp
for Ph.D. students in economics. It incorporates materials from previous instructors, including Shu-Chen
Tsao, ChienHsun Lin, and Sarah Robinson.
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Definition 2

Let the optimization problem D be

max
x∈D(θ)

f(x;α) subject to g(x; β) = 0, h(x; γ) ≥ 0.

Suppose there exists x∗ ∈ D(θ), g(x∗; β) = 0, and h(x∗; γ) ≥ 0 such that

f(x∗) ≥ f(x) for every x such that g(x; β) = 0, h(x; γ) ≥ 0.

Then x∗ is called the a solution of D.

We can write x∗ : Θ ⇒ X as a correspondence such that that

x∗(α, β, γ, θ) = arg max
x∈D(θ)

f(x;α) subject to g(x; β) = 0, h(x; γ) ≥ 0.

That is, x∗ = {x ∈ X|x∗ is a solution of D}. Then x∗ is called the solution set of D.

The optimization problem at the very beginning can be expressed as

max
x1,x2∈R+

xα
1x

1−α
2 subject to p1x1 + p2x2 ≤ m.

Unconstrained Optimization Problems

Let us start by solving optimization problems without constraints.

Example 1

Let f(x, y) = |x − y|. x ∈ {0, 1, . . . , n}, y ∈ {0, 1, . . . , n}, where n ∈ N. Find the
solution(s) (x∗, y∗) that maximizes f .

Example 2

Let f(x, y) = |x − y|. The constraint is x + y ≤ 5. x, y ∈ R+ (including 0). Find the
solution(s) (x∗, y∗) that maximizes f .

2
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Example 3

Let f(x, y) = |x − y|. The constraint is x + y < 5. x, y ∈ R+ (including 0). Does the
solution that maximizes f exist?

Given the solution and the parameters, the value of the function is then called the value
function.

V (α, β, γ, θ) = f(x∗(α, β, γ, θ), α).

In Example 1, the solution set is

(x∗(n), y∗(n)) = {(0, n), (n, 0)|n ∈ N}.

Plugging in the solution, we can find the value function

V (n) = f(x∗(n), y∗(n)) = |n− 0| = n.

You can find that given different values of the parameter n, the optimal solutions and values
may be different.

First Order and Second Order Conditions

We now consider the convenient case where the objective function is differentiable and there
are no constraints. The first order condition serves as our starting point, allowing us to
identify solution candidates.

Theorem 1

Let f : R → R be defined on [a, b]. If f has a local extreme at x ∈ (a, b), and if f ′(x)
exists, then f ′(x) = 0.

Notice that the first order condition can only detect the interior solutions of the optimiza-
tion function. If the solutions are on the boundaries, the solutions are called the corner
solutions.

To identify the extreme value is a maximum or a minimum, we can further apply the second
order condition.
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Theorem 2

Let f : R → R be defined on [a, b], f is twice differentiable, and f ′(x) = 0. If x ∈ (a, b)
is a local maximum of f , then f ′′(x) ≤ 0; if x ∈ (a, b) is a local minimum of f , then
f ′′(x) ≥ 0.

Instead of a local extreme, we are looking for a global extreme such that f(x∗) ≥ f(x) for
every x ∈ X.

Summary: To find the global extreme such that f(x∗) ≥ f(x) for every x ∈ X, we need
to check the following (say, for maximization problem):

• Find all x such that f ′(x) = 0 and f ′′(x) ≤ 0. Then, evaluate f(c).

• Evaluate f(x) at the corner(s) of X.

• Compare all f(x) such that x satisfy either of the two conditions.

Example 4

Find the solution to the following optimization problems.

1. maxx∈[−1,2]−x4 + 2x3 + 1

2. minx∈[−1,2]−x4 + 2x3 + 1

We can also extend our scope to multivariate functions.

Theorem 3

Let f : Rn → R be defined on I = [a1, b1] × · · · × [an, bn]. If f has a local extreme at
x ∈ E ⊂ I for an open set E, and if ∇f(x) exists, then ∇f(x) = 0.

We can extend the second order condition to multivariate functions. Recall that the Hessian
matrix contains all second order partial derivatives.
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Theorem 4

Let f : Rn → R be defined on I = [a1, b1]× · · · × [an, bn]. Let f be twice differentiable
and ∇f(x) = 0. Let E ∈ I be an open set, and H = D(∇f) be the Hessian matrix.

Then, if x ∈ E is a local maximum of f , then H is negative semidefinite; if x ∈ E is a
local minimum of f , then H is positive semidefinite.

Summary: To find the global extreme such that f(x∗) ≥ f(x) for every x ∈ E, we need
to check the following facts (say, for maximization problem).

• Find all x such that ∇f(x) = 0 and H is negative semidefinite. Then, evaluate f(x).

• Evaluate f(x) at the corner(s) of E.

• Compare all f(x) such that x satisfy either of the two conditions.

Example 5

Identify the extrema for the function

f(x, y) = 8x3 + 2xy − 3x2 + y2 + 1.

Envelope Theorem

Consider the profit maximization problem:

max
K>0,L>0

π(K,L; p, w, r) = max
K>0,L>0

p [log(K) + log(L)]− rK − wL.

You can find the solution

K∗(p, w, r) =
p

r
, L∗(p, w, r) =

p

w

and the value function

Vπ(p, w, r) = p
[
log

(p
r

)
+ log

( p

w

)]
− 2p.

We are often interested in the extra value of a marginal increase in price p. In math, this
term is:

dVπ

dp
≡ d

dp
π(K∗, L∗, p; r, w)

5
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You may notice that this total derivative can be difficult to calculate, since the optimal
choice K∗(p, w, r) = p

r
and L∗(p, w, r) = p

w
change as well when p changes. Luckily, we have

the envelope theorem.

In short, the envelope theorem states that the total derivative d
dp
π(K∗, L∗, p; r, w) is equiva-

lent to the partial derivative ∂π
∂p
(K∗, L∗, p; r, w), which is often easier to calculate. To verify

this, we can evaluate the derivatives of K∗, L∗, and Vπ with respect to p.

dK∗

dp
=

1

r
,

dL∗

dp
=

1

w
,

dVπ

dp
= log

(p
r

)
+ log

( p

w

)
.

Let’s see a formal proof of the envelope theorem for this case. Note that the value function
is derived from the objective function using the optimized choices.

dVπ ≡dπ(K∗, L∗, p; r, w)

=Dpπ(K
∗, L∗, p; r, w)dp

+DKπ(K
∗, L∗; p, r, w)dK +DLπ(K

∗, L∗; p, r, w)dL.

Since now we are interested in how p will change the whole value, we also include p as a
variable. Hence

dVπ

dp
=Dpπ(K

∗, L∗, p; r, w) (direct effect)

+DKπ(K
∗, L∗; p, r, w)

dK

dp
+DLπ(K

∗, L∗; p, r, w)
dL

dp
. (indirect effect)

However, we know that K∗ and L∗ are (local) maxima. So, according to the first order
condition:

DKπ(K
∗, L∗; p, r, w) = DLπ(K

∗, L∗; p, r, w) = 0.

Therefore,
dVπ

dp
≡ d

dp
π(K∗, L∗, p; r, w) =

∂π

∂p
(K∗, L∗, p; r, w).

In other words, under optimality, since the partial derivative with respect to the choice
variables are all equal to zero, we don’t need to worry about the indirect effects of p on
optimal consumption of K and L. Hence, we can simply evaluate the comparative statics
with the direct effect at the optimal choices. This result is called the envelope theorem.

6
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Theorem 5: Envelope Theorem: unconstrained version

Consider f : Rn → R, θ ∈ Θ and a maximization problem maxx f(x; θ), and let x∗ be
the solution function. If f is differentiable and if x∗ is continuously differentiable with
respect to θ at θ, then for the value function v : Θ → R,

dv

dθ
≡ df

dθ
(x∗; θ) =

∂f

∂θ
(x∗; θ)

at the specific θ.

Optimization Problems with Equality Constraints

Let us now turn to the optimization with constraints. Consider, again, the following utility
function and the budget constraint:

u(x1, x2) = xα
1x

1−α
2 p1x1 + p2x2=m.

We have an equality constraint to this question. One way to solve this is to replace x2 with

x2 =
m− p1x1

p2

and then plug it back to the objective function, so that the optimization problem becomes
unconstrained again.

However, if the constraint is like

exp


√
x3
1 + x

1/α
2

2π(x2 − µ)2

 = x1σ
2

then the replacement method does not seem to be very efficient. Hence, we introduce an
extremely powerful tool that can be applied to almost all situations: Lagrangian function.

7
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Definition 3

Let f : Rn → R and g : Rn → R. Also let (α, β) ∈ Θ. Then for the following
optimization problem

max
x

f(x;α) subject to g(x; β) = 0.

We can write a Lagrangian function

L(x, λ;α, β, θ) = f(x;α) + λg(x; β),

where λ is called the Lagrangian multiplier.

The following theorem identifies the extreme value under the constrained optimization prob-
lem.

Theorem 6: Lagrange’s theorem

Let f and g are continuously differentiable over some D ⊂ Rn. Consider an optimization
problem

max
x

f(x) subject to g(x) = c.

Let the Lagrangian function be

L(x, λ;α, β, c) = f(x;α) + λ(c− g(x; β)).

Suppose x∗ is an interior point of D, and x∗ solves the optimization problem. Then,
there exists λ∗ ∈ R such that for every i = 1, . . . , n,

∂L
∂xi

(x∗, λ∗) = 0 and
∂L
∂λ

(x∗, λ∗) = 0.

To some extent, Lagrangian function transforms the constrained optimization into an un-
constrained problem, so we can simply evaluate the optimization problem of the Lagrangian.

To see the reasoning behind the theorem, first notice that when the constraint is satisfied,
the solution that optimizes the Lagrangian also optimizes the original function. Also, if we
look at the level curves on the choice space X, the gradient vector represents the normal
vector at some specific point.

8
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g(x1, x2) ≤ 0

x2

x1

g(x1, x2) = 0

∇xg(x)

f(x1, x2) = y∗

∇xf(x)

When the objective function is optimized given some constraint, the function and the con-
straint must be tangent with each other on the choice space. That is, the normal vectors of
the f and g must be linear dependent at that specific point. Therefore, there exists a scalar
λ such that ∇xf(x

∗) = λ∇xg(x
∗).

The Lagrange multiplier λ is sometimes interpreted as the shadow price of the constraint.
Since

df(x) = ∇xf(x
∗) · dx = λ∇xg(x) · dx = λdg(x),

one may interpret λ as the marginal value of the constraint. For example, suppose that
g(x) = m − p · x is the budget constraint in the consumption maximization problem, and
f(x) is the utility function. Then dg is the marginal change in the budget constraint, namely
the income, dm. Then when the income m increases by dm, the total utility increases by
λdg = λdm units.

Another implication is to view Lagrangian multiplier as a dual variable. Suppose, instead of
solving the optimization of f , we are now interested in the optimization of g. (For example,
in the scenario of utility maximization problem, now we are fixing the utility at a certain
level and minimizing the expenditure). Then we can use the similar construction and find

γ∇f(x∗) = ∇g(x)

and the Lagrange multiplier γ = 1/λ. You may (or may not) learn more about the duality
problem during the first quarter microeconomic theory.

We provide the sufficient condition for the solutions to constrained optimization problem for
the special case that f : R2 → R with a single constraint.

9
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Theorem 7: Sufficient condition of Constrained Optimization

Suppose the optimization problem is:

max
x1,x2

f(x1, x2) subject to c = g(x1, x2)

or
min
x1,x2

f(x1, x2) subject to c = g(x1, x2)

Denote the Lagrangian as L(x1, x2, λ).

Define the bordered Hessian matrix

H =


Lλλ Lλ1 Lλ2

L1λ L11 L12

L2λ L21 L22

 =


0 LλK LλL

LKλ LKK LKL

LLλ LLK LLL

 .

Suppose ∇L(x∗
1, x

∗
2, λ

∗) = 0.

Then, if det(H) > 0, then (x∗
1, x

∗
2) solves the maximization problem; if det(H) < 0, then

(x∗
1, x

∗
2) solves the minimization problem.

Example 6

Suppose the cost function is C(K,L) = (rK + wL)2 (r, w > 0), and the production
function is F (K,L) = KL, where α ∈ (0, 1). Solve the cost minimization problem

min
K,L

C(K,L) subject to F (K,L) = y

for some given level of y, and then find the total cost function C(r, w, y).

Solution. First of all, we write the Lagrangian and solve the gradient.

L(K,L, λ) = (rK + wL)2 + λ(y −KL).

10
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∂L
∂K

=2r(rK + wL)− λL = 0 (1)

∂L
∂L

=2w(rK + wL)− λK = 0 (2)

∂L
∂λ

=y −KL = 0 (3)

From (1) and (2), we can solve

λ =
2r(rK + wL)

L
=

2w(rK + wL)

K
⇒ rK∗ = wL∗.

Then we can find
K∗L∗ = K∗ ·

( r

w

)
K∗ = y.

Hence

K∗ =

√
wy

r
, L∗ =

√
ry

w
, (λ∗ = 4rw)

and

C(r, w, y) = C(K∗(r, w, y), L∗(r, w, y)) =

(
r

√
wy

r
+ w

√
ry

w

)2

= 4rwy.

One can also check the bordered Hessian for second order conditions∣∣∣∣∣∣∣∣
Lλλ LλK LλL

LKλ LKK LKL

LLλ LLK LLL

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

0 −L −K

−L 2r2 2wr − λ

−K 2wr − λ 2w2

∣∣∣∣∣∣∣∣
=L

[
−2w2L+K(2wr − λ)

]
−K

[
−L(2wr − λ) + 2r2K

]
=− 2w2L2 − 2r2K2 + 4wrKL− 2LKλ = −2(rK − wL)2 − 2LKλ < 0.

Hence K∗ and L∗ solve the minimization problem. ■

For completeness, we provide the generalized version of Lagrange’s theorem, where we have
more than one constraint.

11
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Definition 4

Let f : Rn → R, gk : Rn → R for each k = 1, . . . , K. Also let (α, β) ∈ Θ. Then for the
following optimization problem

max
x

f(x;α) subject to c1 = g1(x; β), . . . , cK = gk(x; β),

We can write a Lagrangian function

L(x, λ1, . . . , λK ;α, β, c) = f(x;α) + λ1[c1 − g1(x; β)] + · · ·+ λK [cK − gk(x; β)],

where λ1, . . . , λK ∈ R are Lagrange multipliers.

Theorem 8: Lagrange’s theorem: multiple constraints

Let f and g are continuously differentiable over some D ⊂ Rn. Consider an optimization
problem and the Lagrangian function above. Suppose x∗ is an interior point of D, x∗

solves the optimization problem, and ∇gk(x∗) is linear independent for each k. Then
there exist unique λ∗ ∈ RK such that for every i = 1, . . . , n and k = 1, . . . , K,

∂L
∂xi

(x∗, λ∗) = 0 and
∂L
∂λk

(x∗, λ∗) = 0.

Envelope Theorem—With Constraints

After solving the constrained maximization problem, we can also find the comparative statics
for the value function. Specifically, consider the following maximization problem:

max
x

f(x; θ) subject to c = g(x; θ).

We can write the Lagrangian

L(x, λ; θ, c) = f(x; θ) + λ[c− g(x; θ)].

Then the first order conditions yields

∂L
∂xi

= fi(x
∗; θ)− λgi(x

∗; θ) = 0 ⇒ fi(x
∗; θ) = λgi(x

∗; θ) ∀i.

∂L
∂λ

= c− g(x∗; θ) = 0 ⇒ g(x∗; θ) = c.

12
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Note that, similarly, the total differential

dVf ≡ df(x∗, θ) =fθ(x
∗, θ)dθ + f1(x

∗, θ)dx1 + · · ·+ fn(x
∗, θ)dxn

=fθ[x
∗, θ)dθ + λ[g1(x

∗, θ)dx1 + · · ·+ gn(x
∗, θ)dxn]

=fθ(x
∗, θ)dθ + λ [dg(x∗, θ)− gθ(x

∗, θ)dθ] .

Question: How can we derive the second line? How can we derive the third line?

Therefore,

dVf

dθ
= fθ(x

∗, θ) + λ

[
dg

dθ
(x∗, θ)− gθ(x

∗, θ)

]

= fθ(x
∗, θ)− λgθ(x

∗, θ)

(
g(x∗, θ) = c ⇒ dg

dθ
= 0

)

=
∂L
∂θ

(x∗, λ∗, θ).

Question: How do we derive the last line?

In short, instead of taking the total derivatives, you can just take the partial derivative of
the Lagrangian and evaluate at the optimal.

Theorem 9: Envelope Theorem: constrained version

Consider f : Rn → R, θ ∈ Θ and a maximization problem

max
x

f(x; θ) subject to g(x; θ) ≥ 0.

Let L(x, λ; θ) be the corresponding Lagrangian. If f is differentiable and if the solution
x∗ is differentiable at some parameter θ, then for the value function v : Θ → R,

dv

dθ
=

∂L
∂θ

(x∗, λ∗, θ)

at the specific θ.

13
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Following from the cost minimization example we solved,

∂C

∂r
(r, w, y) =

∂L
∂r

(x∗, λ∗, r, w, y) = 2K∗(rK∗ + wL∗) = 4wy

∂C

∂w
(r, w, y) =

∂L
∂w

(x∗, λ∗, r, w, y) = 2L∗(rK∗ + wL∗) = 4ry

∂C

∂y
(r, w, y) =

∂L
∂y

(x∗, λ∗, r, w, y) = λ = 4rw

The envelope theorem for constrained optimization problems is very common in economics.
We use this to prove several important theorems in consumer theory.

Optimization Problems with Inequality Constraints

Karush-Kuhn-Tucker Condition

Now we start looking at the optimization problem with inequality constraints. For example,

max
x≥0

u(x) subject to p · x ≤ m.

In this case, the constraint may not be binding, i.e. the “equal” part of the constraint may
not be applied to the problem. For example,

max
x≥0,y≥0

−
√

(x− 1)2 + (y − 1)2 subject to x+ y ≤ 5.

In this utility maximization problem, there is a global bliss point (x∗, y∗) = (1, 1) that
maximizes the utility, and x∗ + y∗ = 2 < 5 where the budget constraint is slack. To cope
with this type of the issue, we introduce the following Karush-Kuhn-Tucker conditions.

14
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Theorem 10: Constrained Optimization—inequality constraints

Let f : Rn → R, gk : Rn → R are continuously differentiable over some D ⊂ Rn for
each k = 1, . . . , K. Then consider the following optimization problem

max
x

f(x;α) subject to c1 ≥ g1(x; β), . . . , cK ≥ gK(x; β),

We can write the Lagrangian

L(x, λ1, . . . , λK ;α, β, c) = f(x;α) + λ1[c1 − g1(x; β)] + · · ·+ λK [cK − gK(x; β)].

If x∗ is an interior point of D which solves the optimization problem, and ∇xg
k(x∗) is

linear independent for each k. Then there exists unique λ ∈ RK satisfies the following
conditions:

1. ∂L
∂xi

= 0 for each i = 1, . . . , n

2. ∂L
∂λk

≥ 0 for each k = 1, . . . , K

3. λk ≥ 0 for each k = 1, . . . , K

4. λk[ck − gk(x)] = 0 for each k = 1, . . . , K.

Be very careful about how the Lagrangian is settled up, especially for the signs and the
inequalities in the condition. Also note that this set of the conditions are solving for the
maximizing solutions. For the minimization problem, you will need to switch the problem
into a maximization problem by adding a negative sign to objective function.

The last condition is also called the complementary slackness condition. It is the
product of the Lagrange multiplier and the constraint. If the constraint k is not binding,
that is, is slack,

ck − gk(x) > 0

then according to the complementary-slackness condition, the Lagrange multiplier λk must
be equal to 0. In such a situation, it is equivalent to have a Lagrangian where we remove
constraint k.

Example 7

Solve the following maximization problem.

max
x,y

xy subject to m ≥ pxx+ pyy, x ≥ 0, y ≥ 0.

15
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Solution. We first write down the Lagrangian, carefully,

L(x, y, λ, µx, µy) = xy + λ(m− pxx− pyy) + µxx+ µyy.

Note that we have three Lagrange multipliers, λ, µx, and µy. Then according to KKT
conditions, there exists non-negative λ, µx, and µy such that

∂L
∂x

=y∗ − λpx + µx = 0
∂L
∂y

=x∗ − λpy + µy = 0

∂L
∂λ

=m− pxx
∗ − pyy

∗ ≥ 0
∂L
∂µx

=x∗ ≥ 0
∂L
∂µy

= y∗ ≥ 0

and the complementary slackness condition:

λ[m− pxx
∗ − pyy

∗] = µxx
∗ = µyy

∗ = 0.

Now, we have ∂L
∂x

= 0, ∂L
∂y

= 0, ∂L
∂λ

≥ 0, ∂L
∂µx

≥ 0, ∂L
∂µy

≥ 0. How many cases should we check?

There will be 23 = 8 cases. Let’s check all the cases.

1. Case 1: ∂L
∂λ

= 0, ∂L
∂µx

= 0, ∂L
∂µy

= 0.

Then,m−pxx
∗−pyy

∗ = 0, x∗ = 0, y∗ = 0, which leads to contradiction whenm, px, py >
0.

2. Case 2: ∂L
∂λ

> 0, ∂L
∂µx

= 0, ∂L
∂µy

= 0.

Then, λ = 0, x∗ = 0, y∗ = 0. So, u(x∗, y∗) = 0.

3. Case 3: ∂L
∂λ

= 0, ∂L
∂µx

> 0, ∂L
∂µy

= 0.

Then, m− pxx
∗ − pyy

∗ = 0, µx = 0, y∗ = 0. So, u(x∗, y∗) = 0.

4. Case 4: ∂L
∂λ

= 0, ∂L
∂µx

= 0, ∂L
∂µy

> 0.

Then, m− pxx
∗ − pyy

∗ = 0, x∗ = 0, µy = 0. So, u(x∗, y∗) = 0.

5. Case 5: ∂L
∂λ

> 0, ∂L
∂µx

> 0, ∂L
∂µy

= 0.

Then, y∗ = 0. So, u(x∗, y∗) = 0.

6. Case 6: ∂L
∂λ

> 0, ∂L
∂µx

= 0, ∂L
∂µy

> 0.

Then, x∗ = 0. So, u(x∗, y∗) = 0.

7. Case 7: ∂L
∂λ

= 0, ∂L
∂µx

> 0, ∂L
∂µy

> 0.

Then, m− pxx
∗ + pyy

∗ = 0. From the first order conditions we can derive

λ = −y∗

px
= −x∗

py
⇒ pxx = pyy.

Hence
m = pxx

∗ + pyy
∗ = 2pxx

∗ = 2pyy
∗ ⇒ x∗ =

m

2px
, y∗ =

m

2py
.

16
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Then u(x∗, y∗) = m2

4pxpy
> 0.

8. Case 8: ∂L
∂λ

> 0, ∂L
∂µx

> 0, ∂L
∂µy

> 0.

Then, λ = µx = µy = 0. From the first order conditions, we can derive x∗ = y∗ = 0.
So, u(x∗, y∗) = 0.

Summarizing the cases, we find that the maximum is reached when only the constraint
m− pxx

∗ − pyy
∗ = 0 binds, and x∗ = m

2px
, y∗ = m

2py
. ■

Notice that when we include the non-negative constraints, we add the (non-negative) La-
grange multipliers. Thus, using the same example,

∂L
∂x

= y∗ − λpx + µx = 0 ⇒ y∗ − λpx = −µx ≤ 0,

where the equality binds when µx = 0, or when the condition x > 0 holds.

Therefore, sometimes people do not explicitly add the non-negative constraints, but instead
express the first two FOCs as:

∂L
∂x

≤ 0, equality holds when x > 0,

∂L
∂y

≤ 0, equality holds when y > 0.

Let’s look at a trickier example with quasilinear objective functions.

Example 8

Suppose px, py,m > 0. Solve

max
x≥0,y≥0

log(x) + y subject to pxx+ pyy ≤ m.

Solution. We analyze the problem first: note that log(·) does not have non-positive elements
in the domain, so the condition x = 0 never binds. In other words, µx = 0.

17
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Then, we can write the Lagrangian and the KKT conditions.

L(x, y, λ, µy) = log(x) + y + λ(m− pxx− pyy) + µyy.

∂L
∂x

=
1

x∗ − λpx = 0,
∂L
∂y

=1− λpy + µy = 0,

∂L
∂λ

=m− pxx
∗ − pyy

∗ ≥ 0,
∂L
∂µy

=y∗ ≥ 0, λ ≥ 0, µy ≥ 0

λ(m− pxx
∗ − pyy

∗) = 0, µyy = 0.

Now consider the following cases.

1. Case 1: ∂L
∂λ

= 0, ∂L
∂µy

= 0.

Then, y∗ = 0. From the budget constraint, x∗ = m
px
, and λ = 1

m
, µy = py

m
− 1. Since

µy ≥ 0, this case holds if m ≤ py.

2. Case 2: ∂L
∂λ

= 0, ∂L
∂µy

> 0.

In this case, µy = 0, so λ = 1
py

and x = py
px
. By the budget constraint, y = m−py

py
> 0,

and this case holds if m > py.

3. Case 3: ∂L
∂λ

> 0, ∂L
∂µy

= 0.

Then, λ = 0 and y∗ = 0. This implies ∂L
∂x

= 1
x∗ = 0. This is not possible for all x ≥ 0.

4. Case 4: ∂L
∂λ

> 0, ∂L
∂µy

> 0.

Then, λ = 0. This implies ∂L
∂x

= 1
x∗ = 0. This is not possible for all x ≥ 0.

Therefore, we can summarize the solution as follows:

(x∗, y∗) =


(

m
px
, 0
)

if m ≤ py(
py
px
, m−py

py

)
if m > py

.

■

Example 9

Suppose px, py, u > 0. Solve

min
x≥0,y≥0

pxx+ pyy subject to x+ y ≥ u.

For the minimization problem, we firstly reform the question into a maximization problem

18
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by switching the objective function:

max
x≥0,y≥0

−(pxx+ pyy) subject to x+ y ≥ u.

Then for λ, µx, µy ≥ 0, the Lagrangian yields

L(x, y, λ, µx, µy) = −(pxx+ pyy) + λ(x+ y − u) + µxx+ µyy,

The rest is for your homework practice.

Sometimes, economic intuition is helpful for maximization problem. In this question, we are
minimizing the expenditure spent on buying x and y, with the total units of x and y need
to be no less than u.

Therefore, the solution to this question should looks like

(x∗, y∗) =

(0, u) if px > py

(u, 0) if px < py

.

and when px = py, (x
∗, y∗) = (u− k, k), where 0 ≤ k ≤ u. You can verify that this is indeed

the solution.

The Sufficiency of Karush-Kuhn-Tucker Conditions*

As frequently emphasized, the first-order conditions derived from KKT framework are nec-
essary conditions for optimal solutions , but not sufficient. That is, satisfying the KKT
conditions does not guarantee that a candidate point is an optimal solution.

To illustrate, recall Example 7. In that case, the candidate solution x∗ = y∗ = 0 satisfies
all KKT conditions, yet fails to achieve the maximum. The reason lies in the fact that the
objective function, f(x, y) = xy, is not a concave function.

Below, we present two theorems that provide sufficient conditions under which KKT solutions
are guaranteed to be optimal.

19



UCSB Econ Ph.D. Math Camp - Analysis Summer 2025

Theorem 11: Kuhn-Tucker Sufficiency Theorem

Consider the constrained maximization problem

max
x≥0

f(x) subject to g1(x), . . . , gK(x).

Suppose the following conditions hold:

1. f(·) is differentiable and concave for x ≥ 0

2. gk(·) is differentiable and convex for x ≥ 0 for each k

3. x∗ satisfies the KKT maximum conditions.

Then x∗ solves the maximization problem.

However, in practice, the concavity of f or the convexity of the constraints gk may not hold.
Fortunately, the following result provides a more flexible set of sufficient conditions that
relax the concavity/convexity requirements.

Theorem 12: Arrow-Enthoven Sufficiency Theorem

Consider the maximization problem

max
x≥0

f(x) subject to g1(x), . . . , gK(x).

Suppose all of the following conditions hold:

1. f(·) is differentiable and quasiconcave for x ≥ 0

2. gk(·) is differentiable and quasiconvex for x ≥ 0 for each k

3. x∗ satisfies the KKT maximum conditions.

4. any one of the following conditions is satisfied:
(a) fj(x

∗) < 0 for at least one xj.

(b) fj(x
∗) > 0 for some xj where x∗

j > 0 without violating any constraints

(c) ∇f(x∗) ̸= 0, and the second derivative exists at (x∗)

(d) f(·) is concave.

Then x∗ solves the maximization problem.
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Fortunately, most optimization problems encountered in practice in economics meet at least
one of these sufficient conditions.

Hamiltonian and Optimal Control*

Note: This optional section covers differential equations.

Consider the following optimization problem.

max
c(t),t≥0

∫ T

0

F (k)e−ρtdt subject to k̇(t) = −c(t)− nk(t), k(0) = k0

The optimization incorporates the integration over an interval of continuous time. The goal
is to choose a series of c(t) to maximize the time-discounted objective function, given the
motion of capital k̇ as the constraint. The “β(t) ≡ e−ρt” is called the discounting factor,

where you can easily see that β̇
β
= −ρ. Hence this model captures the maximization problem

at the end period (t = T ) with a constant discount rate over time.

This type of maximization problem is called the optimal control problem. We formalize
the optimal control problem as follows.

Definition 5 (Optimal control problem)

Let the optimal control problem be

max
x(t)

∫ T

0

f(x(t), y(t), t)dt subject to ẏ(t) = g(x(t), y(t), t),

where f is integrable and satisfies necessary regularity conditions. x(t) is called the
control variable, and y(t) is called the state variable. The solution of the optimal
control problem is a function x∗ : [0, T ] → Rn.

In other words, we switch the control variable to adjust the state variable so that we can
reach the optimality, and the “adjustment” is given by the motion function of the states. In
the beginning example, c(t) is the choice variable. and k(t) is the state variable.
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It seems intuitive to use the Lagrangian to solve the problem.

L =

∫ T

0

f(x(t), y(t), t)− λ(t) [ẏ(t)− g(x(t), y(t), t)] dt.

Note that the Lagrange multiplier, λ(t), is also a function, as the constraint is a function
over time.

As of Lagrangian, we will take the partial derivatives with respect to the variables x, y and
λ. However, it is not so intuitive to “take derivatives” with respect to functions, x(t), y(t)
and λ(t). Instead, we make some adjustment to it. Note that by integration by part,∫ T

0

λ(t)ẏ(t)dt = λ(t)y(t)

∣∣∣∣T
0

−
∫ T

0

λ̇(t)y(t)dt.

Hence we can rewrite the Lagrangian as follows

L =

∫ T

0

[
f(x(t), y(t), t) + λ(t)g(x(t), y(t), t) + λ̇(t)y(t)

]
dt− λ(t)y(t)

∣∣∣∣T
0

.

We focus on the integrand of the Lagrangian.

I = f(x, y, t) + λg(x, y, t) + λ̇(t)y.

If this integrand is optimized for every x and y given each t, then the integral is also optimized.
Therefore we can have the following FOCs.

∂I
∂x

=fx(x, y, t) + λgx(x, y, t) = 0

∂I
∂y

=fy(x, y, t) + λgy(x, y, t) + λ̇ = 0.

It seems that the solution depends only on the marginal behavior of f + λg. Thus we define
f + λg as the Hamiltonian function.
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Proposition 1 (Hamiltonian)

Let the optimal control problem be

max
x(t)

∫ T

0

f(x(t), y(t), t)dt subject to ẏ(t) = g(x(t), y(t), t),

where f is integrable and satisfies necessary regularity conditions. Define the Hamil-
tonian function as

H(x, y, λ) = f(x, y, t) + λg(x, y, t).

Then the solution of the optimal control problem satisfies the following first order con-
ditions:

∂H
∂x

=0

∂H
∂y

=− λ̇

∂H
∂λ

=g(x, y)(= ẏ).

λ is sometimes called the costate.

Example 10

Consider the golden rule maximization problem

max
s

∫ T

0

(1− s)f(k(t))e−ρtdt subject to k̇(t) = sf(k(t))− nk(t), k(0) = k0,

where s is the saving rate, and k(t) is the capital, with n as the parameter of population
growth. Find the golden rule optimal saving rate s.

Solution. State Hamiltonian

H(s, k, λ) = (1− s)f(k)e−ρt + λ(sf(k)− nk).
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The FOCs yields

∂H
∂s

=− f(k)e−ρt + λf(k) = 0 (4a)

∂H
∂k

=(1− s)f ′(k)e−ρt + λ(sf ′(k)− n) = −λ̇ (4b)

∂H
∂λ

=sf(k)− nk = k̇. (4c)

By (4a),
λ(t) = e−ρt ⇒ λ̇(t) = −ρe−ρt = −ρλ.

Hence by (4b),

(1− s)f ′(k)λ+ λ(sf ′(k)− n) = ρλ ⇒ f ′(k∗) = n+ ρ,

which yields the golden rule capital accumulation. Note that the optimal k∗ = (f ′)−1(n+ ρ)
is a constant. Hence k̇ = 0. Therefore the optimal saving rate is

s =
nk∗

f(k∗)
.

■

Consider the following continuous time optimal control problem.

max
x(t),t≥0

∫ T

0

F (x, y, t)e−ρtdt subject to ẏ(t) = g(x, y, t).

This is a subclass of the optimal control problem where we explicitly write out the discount
factor. We write the Lagrangian as before,

L =

∫ T

0

[
F (x, y, t)e−ρt + λ(t)g(x(t), y(t), t) + λ̇(t)y(t)

]
dt− λ(t)y(t)

∣∣∣∣T
0

.

Instead of maximizing the end-time outcome, we can consider the present-value optimization
by multiplying the whole objective function by e−ρt. That is,

L̃ =

∫ T

0

[
F (x, y, t) + λ(t)eρtg(x(t), y(t), t) + λ̇(t)eρty(t)

]
dt− eρtλ(t)y(t)

∣∣∣∣T
0

.

Let µ(t) = λ(t)eρt. Then µ̇(t) = λ̇(t)eρt + ρλ(t)eρt = λ̇(t)eρt + ρµ(t). Hence we can further
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rewrite the Lagrangian as

L̃ =

∫ T

0

[F (x, y, t) + µ(t)g(x(t), y(t), t) + (µ̇(t)− ρµ(t)) y(t)] dt− µ(t)y(t)

∣∣∣∣T
0

.

Following the same argument, we can optimize the integrand and find the FOCs,

Ĩ = F (x, y, t) + µg(x, y, t) + (µ̇− ρµ) y

∂Ĩ
∂x

= Fx(x, y, t) + µgx(x, y, t) = 0

∂Ĩ
∂y

= Fy(x, y, t) + µgy(x, y, t) + µ̇− ρµ = 0

Again, the solution depends on the derivative of F + µg. Hence we provide an alternative
version of Hamiltonian.

Proposition 2 (Present-value Hamiltonian)

Let the optimal control problem be

max
x(t)

∫ T

0

F (x(t), y(t), t)e−ρtdt subject to ẏ(t) = g(x(t), y(t), t),

where f is integrable and satisfies necessary regularity conditions. Define the present-
value Hamiltonian as

H(x, y, λ) = F (x, y, t) + µg(x, y, t).

Then the solution of the optimal control problem satisfies the following first order con-
ditions:

∂H
∂x

=0

∂H
∂y

=ρµ− µ̇

∂H
∂µ

=g(x, y, t)(= ẏ).

We can solve Example 10 again with the present-value Hamiltonian. First state the Hamil-
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tonian and the FOCs:

H(s, k, µ) =(1− s)f(k) + µ(sf(k)− nk).

∂H
∂s

=− f(k) + µf(k) = 0 (5a)

∂H
∂k

=(1− s)f ′(k) + µ(sf ′(k)− n) = ρµ− µ̇ (5b)

∂H
∂µ

=sf(k)− nk = k̇. (5c)

Hence µ = 1 and thus µ̇ = 0 (from (5a)). Then f ′(k) = n+ ρ (from (5b)). You might notice
that the solution remains the same, but the discount rate is incorporated in the Lagrange
multiplier, µ.
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